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Self-Optimal Clustering Technique Using
Optimized Threshold Function
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Abstract—This paper presents a self-optimal clustering (SOC)
technique which is an advanced version of improved mountain
clustering (IMC) technique. The proposed clustering technique is
equipped with major changes and modifications in its previous
versions of algorithm. SOC is compared with some of the widely
used clustering techniques such as K-means, fuzzy C-means,
Expectation and Maximization, and K-medoid. Also, the compar-
ison of the proposed technique is shown with IMC and its last
updated version. The quantitative and qualitative performances
of all these well-known clustering techniques are presented and
compared with the aid of case studies and examples on various
benchmarked validation indices. SOC has been evaluated via clus-
ter compactness within itself and separation with other clusters.
The optimizing factor in the threshold function is computed via
interpolation and found to be effective in forming better quality
clusters as verified by visual assessment and various standard
validation indices like the global silhouette index, partition index,
separation index, and Dunn index.

Index Terms—Expectation maximization algorithm, fuzzy car-
dinality, improved mountain clustering (IMC), interpolation
polynomial.

I. INTRODUCTION

C LUSTERS by nature are the collection of similar objects
[1]. Each group or cluster is homogeneous, i.e., objects

belonging to the same group are similar to each other. Also,
each group or cluster should be different from other clusters,
i.e., objects belonging to one cluster should be different from
the objects of other clusters. Clustering is the process of group-
ing similar objects [2], and this could be hard or fuzzy. In hard
clustering algorithm, each element is allocated to a single clus-
ter during its operation; however, in fuzzy clustering method, a
degree of membership is assigned to each element depending on
its degree of association to several other clusters. It is possible
to convert a fuzzy clustering to a hard clustering by associating
each element to the cluster with the highest membership.

As per the literatures, among all the existing techniques,
none of the clustering techniques can discover all the clusters
present in the data [2] with equal facility because clustering
algorithms often contain implicit assumptions about cluster
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shape or multiple-cluster configurations based on the similarity
measures and grouping criteria used. This explains the reason
behind the development of a large number of clustering tech-
niques in the literature.

Fuzzy C-means (FCM) [3] is one of the well-known clus-
tering techniques and gives good results in terms of cluster
validity. Probabilistic clustering [4] is promising as it gives
nonoverlapping clusters, but the large number of iterations
required in the algorithm for the convergence increases its
computational complexity to the highest. In the modified moun-
tain clustering (MMC) [5], once a potential cluster point is
determined, the potentials of other points are reduced. However,
owing to this restriction, we tend to miss out certain points,
which could as well be potential cluster centers. In the improved
mountain clustering (IMC) version-1 (IMC-1) [6], [7] and IMC
version-2 (IMC-2) [8], [39], after determining the first potential
cluster center, a cluster is formed around this center and is
removed from the rest of the data points, thereby maintaining
the potential of the remaining data points. This technique gives
better results in terms of cluster validity and time complexity
[6]. We are able to get all-relevant clusters by reducing the num-
ber of redundant clusters. Most of the clusters are demarcated
with good performance with this technique. The threshold func-
tion defined in IMC is heuristically estimated, always leaving
scope for much better optimization of the threshold function
and thus having further opportunity in obtaining better quality
of clusters. Utilizing this opportunity, we have proposed a
self-optimal clustering (SOC) technique with a mathematically
optimized threshold function using an interpolation method and
compared it with some of the well-known and widely used
clustering techniques. It has been shown that the proposed
technique is more effective at the optimum number of clusters
with better visualized results and well supported by various
validity indices as well.

This paper is organized into five sections. An overview of
some of the existing clustering algorithms is given in Section II.
The proposed technique SOC has been explained in detail
in Section III. It also includes a brief discussion on various
validity measures used for comparison purpose in this paper. In
Section IV, the qualitative and quantitative results of the com-
parison of various clustering techniques have been discussed
on the basis of various cluster validity measures and visual
consideration. Finally, the conclusions are drawn in Section V.

II. OVERVIEW OF SOME

CLUSTERING-BASED TECHNIQUES

Various techniques have been proposed so far to develop
better and precise clustering algorithms using local variations
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[9], normalized cuts [10], [11], robust analysis of feature
spaces [12], saddle point detection [13], multiresolution [14],
color-texture regions [15], and stochastic clustering [16]. These
significant approaches highlight a wide scope in the field of
clustering and segmentation. Among other developed tech-
niques, Karger’s contraction method [17], unsupervised seg-
mentation [18], and a system comprising a threshold classifier
[19] also contributed significantly in the development of the
more precise clustering algorithms.

Many of the existing segmentation techniques [3],
[20]–[22] are based on direct clustering in space and work
well on homogeneous regions. The proposed segmentation
technique does not take into account any physical processes.
It mainly uses a set of defined dimensions in hyperspace to
represent the corresponding values. Moreover, it facilitates
easy processing of data points defined in hyperspace as well.

Some of the extensively used clustering techniques are FCM
clustering [3], MMC [5], expectation–maximization clustering
[21], mountain clustering [22], K-means clustering [23], and
K-medoid [24], [25]. FCM clustering is developed by Dunn in
1973 and further improved by Bezdek et al. [26]. The mountain
clustering algorithm is proposed by Yager and Filev [22] for
estimating the number and location of cluster centers. This is a
simple and easy-to-implement grid-based algorithm. Although
this method seems simple, the computation grows exponen-
tially with the dimension of hyperspace. To overcome the com-
putational complexity of this clustering technique, Azeem et al.
have presented the MMC technique which determines cluster
centers by an iterative destruction of the mountain function.

The proposed SOC technique proposed here is an advanced
version of the IMC technique. Its threshold function is op-
timized using Lagrange’s form of interpolation polynomial
[27]. This interpolation technique is named after Joseph Louis
Lagrange and was first discovered by Edward Waring in 1779
and later rediscovered by Leonhard Euler in 1783.

III. SOC TECHNIQUE

A. Algorithm

The determination of the threshold function in SOC via
interpolation method achieved a substantial improvement in
cluster quality, for each successive cluster. SOC can be realized
by the algorithm given hereinafter.

Step 1) Normalize the data for each dimension of hyper-
space so that the data points are bounded by a
unit hypercube. The jth instance of the data in x
hyperspace is defined as

xj =
{
xj
1, x

j
2, . . . , x

j
D

}
(1.a)

where D is the total number of dimensions of hyper-
space.

Let x̄j be the normalized instance as

x̄j =
xj − (x)min

(x)max − (x)min
; ∀j = 1, 2, . . . , n (1.b)

where

(x)min =

{
n

minxj
1

j=1

,
n

minxj
2

j=1

, . . . ,
n

minxj
D

j=1

}
(2)

(x)max =

{
n

maxxj
1

j=1

,
n

maxxj
2

j=1

, . . . ,
n

maxxj
D

j=1

}
(3)

and n is the total number of instances or data points
in the data set.

Step 2) Determine the threshold value δm which is a positive
value defining the neighborhood of the data point
for the mth cluster. δm is a heuristic expression
multiplied by an optimizing factor βm for the mth

cluster. βm is calculated via the interpolation method
which is described at a later part of the algorithm.
Initially, βm is assumed to have unity value while
obtaining the mth cluster for the first time. Compute
the threshold function as

δm =

⎛
⎜⎜⎝ 1

2n

n∑
j=1

min(xj)
D∑
i=1

xj
i

⎞
⎟⎟⎠ .(βm). (4)

Step 3) Calculate the potential value P r
m of each point for

the mth cluster using the mountain function as ex-
pressed in (5), which is simply a function of dis-
tance d2(x̄r, x̄j) = (x̄r − x̄j)Q(x̄r − x̄j)

′ between
x̄r and all other data points. Here, Q is a unity matrix

P r
m =

n∑
j=1

exp

[
−
(
d2(x̄r, x̄j)

δ2m

)]
. (5)

Step 4) Select the data point corresponding to the highest
value among P 1

m, P 2
m, . . . . . . , Pn

m as the mth cluster
center c̄m. This could be represented as

c̄m = x̄∗ ⇐ P ∗
m =

n
max
r=1

(P r
m) . (6)

Here, the value of ∗ is that value of “r” at which the
value of P r

m is found to be the highest.
Step 5) Assign those data points in the data set to the mth

cluster whose Euclidean distance from the mth clus-
ter center is less than a threshold value δm, i.e.,

d2(x̄r, c̄m) ≤ δm; ∀r = 1, 2, . . . , n. (7)

Step 6) Eliminate all those data points from the data set
which are assigned to the mth cluster.

Step 7) Repeat Steps 2 to 6 for the reduced data set to make
successive clusters, equal to the optimum number of
clusters M (see Section III-D).

Step 8) Distribute the rest of the data points among the
formed clusters depending upon their Euclidean dis-
tances, i.e., nearness to the respective cluster centers.

As stated earlier, SOC is an advanced version
of the IMC method, and it is quite similar to the
traditional IMC method until Step 8, but Step 9 and
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beyond contributes to major addition and modifica-
tion in the advancement of the SOC method.

Step 9) Calculate the global silhouette value via the silhou-
ette index (GSI) (see Section III-B) using (15)–(17)
for the obtained clusters. A GSI value close to
unity indicates better cluster formation, and this may
be possible when silhouette values Sm for m =
1, 2, 3, . . . . . . ,M tend to attain unity value.

Let t be any cluster formed for which the thresh-
old and silhouette values are δt and St, respectively.

Step 10) Obtain a relation between δt and St by interpolat-
ing δm for m = 1, 2, 3, . . . . . . ,M with their corre-
sponding Sm values. Use Lagrange’s interpolation
formula as follows.

For a total of M clusters, there are M pairs of
values as (δ1, S1), (δ2, S2), . . . . . . , (δM , SM ). The
interpolation polynomial in Lagrange’s form is a
linear combination as shown in

St =

M∑
m=1

Sm.lm(δt) (8)

where

lm(δt) =

M∏
k=1,k �=m

(δt − δk)

(δm − δk)

=
(δt − δ1)

(δm − δ1)
. . . . . .

(
δt − δ(m−1)

)(
δm − δ(m−1)

) (
δt − δ(m+1)

)(
δm − δ(m+1)

)
. . . . . . .

(δt − δM )

(δm − δM )
. (9)

Using (8) and (9), we have

St =
M∑

m=1

Sm.
M∏

k=1,k �=m

(δt − δk)

(δm − δk)
. (10)

On expanding (10), we get

St =S1.

M∏
k=2

(δt − δk)

(δ1 − δk)

+ S2.

M∏
k=1,k �=2

(δt − δk)

(δ2 − δk)
+ S3.

M∏
k=1,k �=3

(δt − δk)

(δ3 − δk)

+ . . . . . . . . . . . .+ SM .

(M−1)∏
k=1

(δt − δk)

(δM − δk)
. (11)

On further expanding (11), the equation becomes

St =S1.
(δt − δ2)

(δ1 − δ2)

(δt − δ3)

(δ1 − δ3)
. . .

(δt − δM )

(δ1 − δM )

+ S2.
(δt − δ1)

(δ2 − δ1)

(δt − δ3)

(δ2 − δ3)
. . .

(δt − δM )

(δ2 − δM )

+ . . .+ S5.
(δt − δ1)

(δ5 − δ1)
. . .

(δt − δ4)

(δ5 − δ4)

(δt − δ6)

(δ5 − δ6)

. . .
(δt − δM )

(δ5 − δM )
+ . . .+ SM .

(δt − δ1)

(δM − δ1)

(δt − δ2)

(δM − δ2)

. . .
(δt − δM−1)

(δM − δM−1)
. (12)

This is a polynomial equation with St expressed in
terms of δt, and the maximum possible value of St

is unity.
Step 11) Substitute St equal to unity in the obtained polyno-

mial. This will give

1 =S1.
(δt − δ2)

(δ1 − δ2)

(δt − δ3)

(δ1 − δ3)
. . .

(δt − δM )

(δ1 − δM )

+S2.
(δt − δ1)

(δ2 − δ1)

(δt − δ3)

(δ2 − δ3)
. . .

(δt − δM )

(δ2 − δM )
+. . .

+S5.
(δt − δ1)

(δ5 − δ1)
. . .

(δt − δ4)

(δ5 − δ4)

(δt − δ6)

(δ5 − δ6)
. . .

(δt − δM )

(δ5 − δM )

+. . .+SM .
(δt − δ1)

(δM − δ1)

(δt − δ2)

(δM − δ2)
. . .

(δt − δM−1)

(δM − δM−1)
. (13)

In (13), all the values except δt are known.
Step 12) Use (13) to find the roots of δt.
Step 13) Substitute the obtained roots back to the polynomial

(13) one by one, and select that root for which the
value of St is found to be closest to unity. The
selected root η is the value of threshold function δt
corresponding to the maximum value of St.

Step 14) Divide η by δm for m = 1, 2, 3, . . . . . . ,M to obtain
the corresponding βm values that will be substituted
in (4) in the calculation of new δm while repeat-
ing the clustering process again, thus maximizing
silhouette value Sm for the clusters formed

βm =
η

δm
; ∀m = 1, 2, 3, . . . . . . ,M. (14)

Step 15) Using these new βm values, repeat from Steps 2 to
14 until δm gets converged where the GSI value for
the formed clusters is maximized. This gives the best
possible cluster through this algorithm.

It is to be noted that, having the complexity of the algorithm
as an important factor and ensuring fairness as per the detailed
analysis of the pool of sample images, the number of iterations
is fixed as 10.

Calculation of β: We have used some widely used and
accepted validation indices to measure the quality of clusters.
They are the global silhouette index (GSI) [28], [29], partition
index (PI) [30], separation index (SI) [30], and Dunn index
(DI) [31], [32]. All validation indices are based on the com-
parison of intercluster distances and intracluster distances. For
better quality of clustering, intercluster distances should be as
high as possible, and intracluster distances among data points
forming clusters should be as low as possible [29]. Variation
in δm brings changes in cluster quality and intercluster and
intracluster distances and alters values of different validation
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TABLE I
VARIATION OF δm, Sm, GSI, η AND βm VALUES WITH VARYING ITERATION

indices too. Therefore, by altering δm, we can improve
validation indices in order to optimize them for better clus-
ter quality. For our experimentation, we have chosen one
of the best cluster validation techniques [28], [29], the GSI,
for improvement in δm. To find the relationship between δm
and silhouette index values of different clusters Sm, we used
interpolation method to formulate a polynomial showing the
relationship between the two varying parameters. They are
generalized henceforth in terms of δt and St. Among all inter-
polation methods, Lagrange’s interpolation method is chosen
because the distribution of δm in color segmentation may not
be uniform in all cases. Lagrange’s interpolation gives the
(M − 1)th degree polynomial for a total of M number of
clusters formed. As the maximum possible value obtained for
St could be unity, thus, the root η is calculated from the polyno-
mial (13) where the value of threshold function δt corresponds
to the maximum value of St. This η value is divided by existing
δm to obtain corresponding βm values. We can improve cluster
quality by multiplying δm with optimizing factor βm while
calculating the values for the corresponding threshold function
that, in turn, shifts its value closer to η thereby shifting its
silhouette index value toward unity. Using these new βm values,
the algorithm steps are repeated until δm gets converged where
the GSI value is maximized. On the basis of wide analysis and
close observations of the results in all the cases, the number of
repetitions of particular steps in the algorithm is chosen as ten
to ensure the attainment of the maximum possible GSI value
for the corresponding cases. At the end, select the βm values
corresponding to a particular repetition for which the GSI
value is found to be the maximum, and repeat the algorithm
at the optimum number of clusters M to get the best possible
clusters.

In order to justify the algorithm mentioned earlier, a sample
image comprising two different colors is analyzed here, and the
variation in δm and Sm with each of the ten repetitions in the
algorithm performed is tabulated in Table I. It shows the values
of δm and Sm at different iterations. This variation shows the
inherent tendency of shifting δm toward η and attaining possible
values closest to it with every repetition of the algorithm until
δm converges.

In the first iteration with the value of βm assumed to be unity,
the value of η corresponding to the maximum possible value of
Sm, i.e., unity, is obtained as 0.0177. On dividing η with δm,

Fig. 1. Variation of GSI with number of iterations for the two-color sample
image.

the corresponding βm values are obtained. Utilizing these com-
puted βm values in the calculation of δm for the next iteration,
the δ1 and δ2 values are shifted toward η. This process continues
in each of the iterations while the instances in the data set are
clustered. After several iterations, we reach to a point at which
the GSI value for the obtained clusters attains maximum. For
the sample image shown in Table I, the maximum value of GSI
is obtained after clustering the whole data set repeatedly for
nine times, thus representing better quality of clusters formed
with the corresponding δm values. In Table I, the maximum
GSI value is highlighted along with the corresponding δm
values at the ninth iteration, obtained with the aid of βm values
calculated after the eighth iteration while forming clusters via
the SOC technique. Here, apart from GSI , values obtained
for other validation indices, like PI and SI , also justify the
selection of δm corresponding to the ninth iteration of the SOC
algorithm. The plots of GSI , PI , and SI against the number
of iterations are shown in Figs. 1–3, respectively. As the index
value in each of the three cases varies between different ranges
which are widely separated, thus, all three indices are plotted
separately so that their graphical pattern and precise value could
be easily analyzed distinctively. We can see that GSI becomes
maximum at the ninth iteration in Fig. 1, whereas PI and SI
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Fig. 2. Variation of PI with number of iterations for the two-color sample
image.

Fig. 3. Variation of SI with number of iterations for the two-color sample
image.

values attain their respective minima at the same location in
Fig. 2 and Fig. 3, respectively. GSI is shown to be the robust
strategy for assessing the quality of clusters obtained [28], [29].
Thus, in most of the cases, choosing the maximum GSI value
also makes the other index values better too, as the inherent
cluster quality is improved.

B. Measures of Cluster Quality

We have employed four different validation indices as a
measure of cluster quality. These validation indices are widely
accepted and give results to a high degree of accuracy. Each one
of them is clearly defined and described as follows.

GSI: For a given cluster Xm with m = 1, 2, 3, . . . . . . ,M ,
GSI [28], [29] assigns to each sample of Xm a quality measure
s(i) with i = 1, 2, 3, . . . . . . , Nm known as the silhouette width.
Here, Nm is the number of samples in the mth cluster. The

silhouette width is a confidence indicator on the membership of
the ith sample in cluster Xm. It is defined as

s(i) =
b(i)− a(i)

max {a(i), b(i)} (15)

where a(i) is the average distance between the ith sample and
all of the samples included in Xm; “max” is the maximum
operator, and b(i) is the minimum of the average distance
between the ith sample and all of the samples clustered in Xk

(k = 1, . . . . . . ,M ; k �= m). From this formula, it follows that
−1 ≤ s(i) ≤ 1.

When a s(i) is close to 1, it indicates that the ith sample
has been well clustered, i.e., it was assigned to an appropriate
cluster. When a s(i) is close to zero, it suggests that the ith

sample could also be assigned to the closest neighboring cluster.
The silhouette value Sm for the mth cluster is defined as

Sm =
1

Nm

Nm∑
i=1

s(i). (16)

It has been shown that, for any partition V ↔ X : X1 ∪X2 ∪
. . . . . . .XM , a GSI value can be used as an effective validity
index for V . It is computed as follows:

GSI =
1

M

M∑
m=1

Sm. (17)

Furthermore, it has been demonstrated that, in many cases,
(17) can be applied to estimate the most appropriate number
of clusters [8] for partition V . In those cases, the partition with
the maximum GSI is taken as the optimal partition.

PI: PI [30] is the ratio of the sum of compactness and
separation of the clusters. It is a sum of individual cluster
validity measures normalized through division by the fuzzy
cardinality of each cluster

PI =

M∑
m=1

∑n
j=1(μjm)2‖xj − cm‖2

Nm

∑M
k=1 ‖ck − cm‖2

(18)

where cm is the mth cluster center, Nm is the fuzzy cardinality,
i.e., sum (μjm), μjm is the membership of data point j in
cluster m

μjm ∈{0, 1}, 1 ≤ j ≤ n, 1 ≤ m ≤ M
M∑

m=1

μjm =1, 1 ≤ j ≤ n

0 ≤
n∑

j=1

μjm ≤ N, 1 ≤ m ≤ M.

A lower value of PI indicates a better partition.
SI: SI [30] uses a minimum-distance separation for partition

validity. A lower value of SI indicates a better partition.

SI =

∑M
m=1

∑n
j=1(μjm)2‖xj − cm‖2

n.mink,m ‖ck − cm‖2 . (19)

DI: DI [31], [32] identifies sets of clusters that are compact
and well separated. For any partition V ↔ X : X1 ∪X2 ∪
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TABLE II
VALIDATION INDEX VALUES FOR IMC-1, IMC-2, AND SOC

. . . . . . .XM , where Xm represents the mth cluster of such
partition, the Dunn’s validation index, DI , is defined as

DI = min
1≤m≤M

⎧⎨
⎩ min

1≤k≤M
k �=m

⎧⎨
⎩ d(Xm, Xk)

max
1≤m≤M

{Δ(Xm)}

⎫⎬
⎭
⎫⎬
⎭ (20)

where d(Xm, Xk) is the average of the centroid linkage in-
tercluster distance defining the distance between clusters Xm

and Xk; Δ(Xm) represents the complete diameter intracluster
distance of cluster Xm. The main goal of this measure is to
maximize intercluster distances while minimizing intracluster
distances. Thus, a large value of DI corresponds to good
clusters. Therefore, the number of clusters that maximizes DI
could be taken as the optimal number of clusters M , and the
one showing a higher value than others represents compara-
tively better cluster quality. The complete diameter intracluster
distance is defined as

Δ(Xm) = max
x,y∈Xm

{d(x, y)} (21)

where Xm is a cluster from partition V ; d(x, y) defines the
distance between any two samples x and y belonging to Xm.
The centroid linkage intercluster distance is defined as

d(Xm, Xk)=
1

(|Xm|+|Xk|)

⎛
⎝ ∑

x∈Xm

d(x, vt)+
∑
y∈Xk

d(y, vs)

⎞
⎠

(22)

where

vs =
1

|Xm|
∑

x∈Xm

x, (23)

vt =
1

|Xk|
∑
y∈Xk

y, (24)

|Xm| and |Xk| provide the number of samples included in
clusters Xm and Xk, respectively.

In this paper, we are focusing on proposing a clustering
technique which ensures better performance in clustering and
segmentation. It is ascertained to have better validity measure
in cluster quality. From the term “better cluster quality,” we
understand “improved performance in terms of segmentation
results.” Cluster quality is measured in terms of cluster validity
measures, for example, GSI . From (15)–(17), a high value
of GSI is obtained when intracluster distances are less and
intercluster distances are more, i.e., the segmented clusters have
appropriate distribution of instances present in a sample under
consideration for segmentation. This shows that instances from
one such cluster characteristically differ from the instances

of other neighboring clusters and are categorized in separate
groups. Visual assessment confirms in the examples that, for a
better cluster quality, each of the varying components present
in a system should be grouped separately after segmentation.
Thus, a higher value of GSI or DI , whereas a lower value of
PI or SI , envisages better performance in terms of segmenta-
tion results.

C. Need for Optimum Threshold Function

There is a need to optimize the threshold function be-
cause of a good number of existing cases in which IMC-1 or
IMC-2 remains unable to show better quality results in compar-
ison to other clustering techniques. In few cases, IMC-2 gives
results even inferior to IMC-1 as well. Also, with the threshold
function of IMC-2 being modified on heuristic basis, there
remains a lot of scope in the estimation of the heuristic factor in
its threshold function for further improvisation. The threshold
function in SOC is systematically optimized using interpolation
method, in order to obtain the best possible clustering with this
method. As an instance, we have taken a figure that describes
the behavior of IMC-1, IMC-2, and SOC.

In Table II, the cluster quality is better when the GSI value
is higher and the PI and SI values are lower.

From Table II, we can easily infer that, with the optimized
threshold function, the SOC algorithm is giving much better
results. Red and yellow colors are properly separated out from
the analyzed image. The improvement in the quality of clus-
tering with SOC is well supported with the relative increment
in the GSI value and the significant decrement in the PI
and SI values. Clearly, after this analysis, we can state that
segmentation using SOC gives appreciably improved results as
compared to IMC-1 in most of the cases and has become even
better than IMC-2 in terms of various cluster quality validation
measures.

D. Determining Optimum Number of Clusters

To determine the optimum number of clusters, we have cal-
culated GSI obtained via IMC technique for various clusters.
With the obtained GSI values, that number of clusters is said
to be optimum whose corresponding GSI value is found to be
maximum [28], [29]. To elucidate it clearly, we have taken a
sample image comprising four different colors for illustration,
and its various clusters are shown in Table III. Visually, we can
see that this figure should have four optimum clusters. Now, this
could be verified with the help of the GSI value. The graph in
Fig. 4 shows the plot of GSI against the number of clusters for
the image shown in Table III. From Fig. 4, clearly, the GSI
value is maximum at the fourth cluster.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on January 27,2021 at 13:39:13 UTC from IEEE Xplore.  Restrictions apply. 



VERMA AND ROY: SELF-OPTIMAL CLUSTERING TECHNIQUE USING OPTIMIZED THRESHOLD FUNCTION 1219

TABLE III
COLOR IMAGE HAVING FOUR DIFFERENT STRIPES

Fig. 4. Variation of GSI with number of clusters for the four-color sample
image.

E. Simulation, Mathematical Proof, and Modeling of the
SOC Algorithm and Its Results

This section basically aims at mathematically evaluating
the convergence property in computing the initial threshold
function and threshold function in the subsequent iterations
while showing the optimizing nature of the SOC algorithm
via simulations as well. In mathematics, an infinite series of
numbers is said to converge absolutely if the sum of the absolute
value of the summand is finite [33]. To be precise, a real
or complex series

∑∞
n=0 an is said to converge absolutely if∑∞

n=0 |an| = L for some real or complex number L. Similarly,
an improper integral of a function,

∫∞
o f(x)dx, is said to

converge absolutely if the integral of the absolute value of
the integrand is finite [33], which could be represented as∫∞
o |f(x)|dx = L. However, in mathematics, there are series or

integrals which could converge, although they do not converge
absolutely. Thus, if in a convergent series, any series which is
not absolutely convergent is called conditionally convergent.
This could be represented as a series

∑∞
n=0 an and said to

converge conditionally if lim
m→∞

∑m
n=0 an exists and is a finite

number, i.e., does not evaluate to ∞ or −∞, but
∑∞

n=0 |an| =
∞. We thus applied these conditionally convergent properties
on the functions used in our proposed algorithm to evaluate
their convergence.

We have the initial threshold function represented as (4).
Using (4) and (14), we have

δm =

⎛
⎜⎜⎝ 1

2n

n∑
j=1

min(xj)
D∑
i=1

xj
i

⎞
⎟⎟⎠ .

(
η

δm

)
. (25)

It is to be noted that δm mentioned in the Right Hand Side of
(25) represents the threshold function having its value calcu-
lated in the previous iteration of the calculation and helps in
evaluating the value for δm shown at the Left Hand Side of (25).
We removed the subscript m and introduced I as the subscript
in (26) to represent a cluster formed in its Ith iteration.

Thus, we have

δI =

⎛
⎜⎜⎝ 1

2n

n∑
j=1

min(xj)
D∑
i=1

xj
i

⎞
⎟⎟⎠

I

.(βI−1). (26)

Moreover, on substitution using (14)

δI =

⎛
⎜⎜⎝ 1

2n

n∑
j=1

min(xj)
D∑
i=1

xj
i

⎞
⎟⎟⎠

I

.

(
ηI−1

δI−1

)
. (27)

On further expanding (27) using (4)

δI =

⎛
⎜⎜⎝ 1

2n

n∑
j=1

min(xj)
D∑
i=1

xj
i

⎞
⎟⎟⎠

I

.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ηI−1⎛
⎜⎜⎝ 1

2n

n∑
j=1

min(xj)
D∑

i=1

xj
i

⎞
⎟⎟⎠

I−1

.(βI−2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(28)

Eventually, we have (29) shown at the bottom of the next page.
For any sample point x, we have a range of possible values of
x(R,G,B) as (0,0,0) to (255,255,255). Thus, the expression

min(xj)
D∑
i=1

xj
i
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has a minimum value of 0 and a maximum value of 0.3333.
This is obtained by Matlab simulation which attempts to use
the Nelder–Mead simplex algorithm [34] for returning a vector
x that is a local minimizer of the mathematical function. Hence

Range of
min(xj)

D∑
i=1

xj
i

= [0, 0.3333]

Range of

⎛
⎜⎜⎝ 1

2n

n∑
j=1

⎛
⎜⎜⎝min(xj)

D∑
i=1

xj
i

⎞
⎟⎟⎠
⎞
⎟⎟⎠

I

= [0, 0.1666].

Moreover, β0 is taken as unity in the first iteration in (4); thus

δ1 =

⎛
⎜⎜⎝ 1

2n

n∑
j=1

⎛
⎜⎜⎝min(xj)

D∑
i=1

xj
i

⎞
⎟⎟⎠
⎞
⎟⎟⎠

I

.(β0).

Hence

range of δ1 =Range of

⎛
⎜⎜⎝ 1

2n

n∑
j=1

⎛
⎜⎜⎝min(xj)

D∑
i=1

xj
i

⎞
⎟⎟⎠
⎞
⎟⎟⎠

I

= [0, 0.1666] (30)

which results in δ1 as a constant having its value defined in a
fixed range.

Thus, from (29) and (30), we have

δI = (const.)I .f(ηI−1). (31)

Using (15)–(17), GSI is represented as

GSI =
1

M

M∑
m=1

1

Nm

Nm∑
i=1

s(i)

i.e.,

GSI =
1

M

[(
1

N1
[s(1) + s(2) + . . .+ s(N1)]

)

+

(
1

N2
[s(1) + s(2) + . . .+ s(N2)]

)
+ . . . . . .

+

(
1

NM
[s(1) + s(2) + . . .+ s(NM )]

)]
.

From (15), it follows that:

−1 ≤ s(i) ≤ 1 (32)

i.e.,

−1 ≤ 1

NM
[s(1) + s(2) + . . .+ s(NM )] ≤ 1

i.e.,

−1 ≤ Sm ≤ 1. (33)

Thus

max[SI ] = 1. (34)

Now, let t be any cluster formed for which the threshold and
Silhouette values are δt and St, respectively.

From (12), we have

St =S1.
(δt − δ2)

(δ1 − δ2)

(δt − δ3)

(δ1 − δ3)
. . .

(δt − δM )

(δ1 − δM )

+ S2.
(δt − δ1)

(δ2 − δ1)

(δt − δ3)

(δ2 − δ3)
. . .

(δt − δM )

(δ2 − δM )
+ . . .

+ S5.
(δt − δ1)

(δ5 − δ1)
. . .

(δt − δ4)

(δ5 − δ4)

(δt − δ6)

(δ5 − δ6)
. . .

(δt − δM )

(δ5 − δM )

+ . . .+ SM .
(δt − δ1)

(δM − δ1)

(δt − δ2)

(δM − δ2)
. . .

(δt − δM−1)

(δM − δM−1)
.

This is a polynomial equation with St expressed in terms of δt.
Hence, from Lagrange’s polynomial, we have

SI = (const.)I .f(δI). (35)

From (31), we already have

δI = (const.)I .f(ηI−1).

Furthermore, from (34), we have

max[SI ] = 1.

From the proposed algorithm, selected root η in a particular
iteration is the value of threshold function δt corresponding
to the maximum possible value of St, i.e., unity. Therefore,
clearly, the nature of our threshold function depends on the
roots of the interpolation polynomial in Lagrange’s form. Now,
it becomes imperative to understand for which classes of

δI =

⎛
⎜⎜⎝ 1

2n

n∑
j=1

min(xj)
D∑
i=1

xj
i

⎞
⎟⎟⎠

I

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ηI−1⎛
⎜⎜⎝ 1

2n

n∑
j=1

min(xj)
D∑

i=1

xj
i

⎞
⎟⎟⎠

I−1

.

⎡
⎢⎢⎣ηI−2

/⎛
⎜⎜⎝(. . .).

⎛
⎜⎜⎝(. . .)

/
(. . .).

⎛
⎜⎜⎝η2

/⎛
⎜⎜⎝ 1

2n

n∑
j=1

min(xj)
D∑

i=1

xj
i

⎞
⎟⎟⎠

2

.
(

η1

δ1

)⎞⎟⎟⎠
⎞
⎟⎟⎠
⎞
⎟⎟⎠
⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)
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Fig. 5. Variation of S with threshold value δ over the range [0, 0.3333] in the
Lagrange’s function SI = (const.)I .f(δI) for the sample image in Table I.

functions and for which interpolation nodes the sequence of
interpolating polynomials SI(δ) converges to the interpolated
function as the subscript I tends to infinity. For any function
f(x) that continuous on an interval [a, b], there exists a table
of nodes for which the sequence of interpolating polynomials
SI(δ) converges to f(x) uniformly on [a, b]. This sequence of
polynomials of the best approximation SI(δ) converges to f(x)
uniformly due to the Weierstrass approximation theorem [35].
Now, we need to verify if each value of SI(δ) may be obtained
by means of interpolation on certain nodes. This is true due
to a special property of polynomials of the best approximation
known from the Chebyshev alternation theorem [36]. Choosing
the points of intersection of interpolation nodes with f(x), i.e.,
the maximum possible value of S, we obtain the required in-
terpolating polynomial coinciding with the best approximation
polynomial.

We obtained these interpolation nodes, i.e., the values of
δ which is the same as η when the most optimized value
of δ is chosen at the intersection points of the function
SI = (const.)I .f(δI), by Matlab simulation. The incorporated
algorithm in this case was originated by T. Dekker and uses a
combination of bisection, secant, and inverse quadratic inter-
polation methods [37], [38] in order to find the roots of the
continuous function of one variable. When this is applied on
the given function within a defined range of δ values, which
is between 0 and 0.1666 as calculated in (30) in our case, it
determines the interpolation nodes for each of the iterations.
These interpolation nodes are optimum values for each of the
iterations.

On performing the required simulations using the sample
image and corresponding data using Table I as reference, it was
observed that the points of intersection with the function SI =
(const.)I .f(δI) are obtained as the simulation results which
are required interpolation nodes for each of the iterations as
shown in Figs. 5 and 6. Further simulation results are captured
in Fig. 7 in which, plotting the obtained interpolation nodes
with the nodal values, η from Table I, the node points calculated
in both the cases are found to be coinciding, and thus, the
function SI = (const.)I .f(δI) is proved to be convergent at

Fig. 6. Computation of interpolation nodes η using “fzero” simulation on the
Lagrange’s function SI = (const.)I .f(δI) for the sample image in Table I.

the obtained interpolation nodes. Fig. 5 plots function SI =
(const.)I .f(δI) for ten times corresponding to ten different
iterations having different (const.)I values in each of the
iterations. The function SI = (const.)I .f(δI) appears linear in
nature as it corresponds to the sample image shown in Table I
having two clusters. In the cases with higher number of clusters,
the degree of function SI = (const.)I .f(δI) also gets raised,
and thereby, the nonlinear graph would be expected. With the
aid of similar simulation on SI = (const.)I .f(δI), interpola-
tion nodes are obtained as intersection points corresponding to
each of the ten iterative functions in Fig. 5, where the former
is represented by blue circles and the latter is represented by
blue lines. Fig. 6 actually displays the same image as depicted
in Fig. 5, but it is appropriately zoomed in at the intersection
points to highlight the obtained interpolation nodes. The ob-
tained nodes and corresponding values are plotted against each
of the iterations in Fig. 7 and analyzed based on simulation
results for the sample image in Table I. As per analysis of the
results, interpolation nodes η using simulation results and η
using the proposed algorithm are found to be the same, i.e., the
Lagrange’s polynomial function SI = (const.)I .f(δI) is found
to be convergent for the obtained interpolation nodes with the
best approximation, and as these nodes are the same as η calcu-
lated in Table I, thus, corresponding silhouette values are veri-
fied to give the best results in their corresponding iterations. It is
further evident from simulation results in Fig. 7 that the silhou-
ette value is highest for the ninth iteration, and hence, the cor-
responding δ value, represented with a green circle in the plot,
is giving the most optimized result. Thus, we could summarize
our conclusions once again with the help of simulation results
in Fig. 7.

Interpolation nodes with the best approximations obtained
for SI = (const.)I .f(δI) confirm the convergence of the func-
tion. Corresponding variable or input δ is thereby confirmed
to converge to give the most optimized result or maximum
silhouette value in the permissible range. Fig. 7 clearly shows
the threshold function δ as conditionally convergent. A slight
deviation in the graphical plot could be observed at times
against the ideal condition or ideal converging nature, as, with
each of the iterations, the possible combination of data points
in clusters varies; thus, at times, S and δ values may be slightly
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Fig. 7. Plot of simulation results with interpolation node η values obtained using simulation, η values obtained using proposed algorithm, δ values
corresponding to each iteration values, corresponding S values, and maximum obtained S value against each of the iterations using the Lagrange’s function
SI = (const.)I .f(δI) for the sample image in Table I.

influenced by segmented data values and their combinations in
subsequently formed clusters for a particular iteration. Also,
the initial threshold function with threshold factor β having
a constant value as “1” is observed to be nonconvergent, for
it has a factor 1/n in its function. As lim

N→∞

∑N
n=1(1/n) is

a nonfinite series, hence, it impacts the convergence of the
initial threshold function. This initial threshold function is
made convergent with the multiplication factor β which, in
turn, is obtained in each of the iterations from the Lagrange’s
polynomial SI = (const.)I .f(δI) which is already proved as
a convergent polynomial at interpolation nodes with the best
approximation.

Hence, the threshold function computed in each of the ten
iterations is proved to be conditionally convergent, but due to
listed minor limitations and variations in the cluster data formed
with each of the iterations, the convergence process tends to
get damped and diverged at specific nodes. Nevertheless, as per
the conditional convergence nature of the threshold function,
it is found to adjust itself automatically and thereby gives the
most optimized threshold function and thereby better quality
clusters. Keeping in view its high precision and accuracy over
other existing techniques, the SOC technique is expected to
find wide application and give promising results, particularly
in medical imaging as it is found to display the most optimized
results.

IV. RESULTS AND DISCUSSION

A. Results of Comparison

The widely used clustering algorithms discussed earlier are
tested and compared by taking various synthetic and natural
images as case studies and examples here. Simulations are

Fig. 8. Variation of GSI with number of clusters for the sample images taken
in Examples 1, 2, and 3.

done on a desktop PC with 2.99-GB RAM, using a 3.00-GHz
processor. Prior to the experiments, no preprocessing is done on
these images. Red-Green-Blue features are used in clustering.
The effectiveness of clusters is compared in terms of GSI , PI ,
SI , and DI .

Example 1: Here, we have an image of a partially cov-
ered face. The image is clustered using K-means, FCM, EM,
K-medoid, IMC-1, IMC-2, and SOC. From the plot in Fig. 8,
we can say that optimum number of clusters is two for the
sample image taken here. Table IV shows the comparison in
terms of different cluster quality measurement indices like
GSI , PI , SI , and DI values that show that SOC is much better
than other clustering techniques used.
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TABLE IV
COMPARISON OF VARIOUS CLUSTERING TECHNIQUES VIA VALIDATION INDICES

TABLE V
COMPARISON OF VARIOUS CLUSTERING TECHNIQUES VIA VALIDATION INDICES

TABLE VI
COMPARISON OF VARIOUS CLUSTERING TECHNIQUES VIA VALIDATION INDICES

Example 2: Here, an image of a bottle with lighting at
the background is taken for analysis purpose. The image
is clustered using K-means, FCM, EM, K-medoid, IMC-1,
IMC-2, and SOC. From the plot in Fig. 8, we can say that the
optimum number of clusters is four here. Table V shows the
comparison in terms of different cluster quality measurement
indices. It is shown here that, although IMC-2 gives inferior
results in this case compared to IMC-1, still, SOC extracts the
best clusters among all compared techniques.

Example 3: Here, we are concerned with the image of a
flower. Fig. 8 shows the variation of GSI values with the
number of clusters and indicating two as the optimum number
of clusters. Table VI shows the performance of K-means, FCM,
EM, K-medoid, IMC-1, IMC-2, and SOC. Here, again, in
spite of having inferior validation index values for IMC-2 as
compared to IMC-1, SOC is still found dominating over others
in terms of better results.

B. Discussion on Performance of Clustering Techniques

The analysis of clustering results on various images as a
basis of comparison clearly shows that the quality of clustering
in SOC is better than other clustering techniques mentioned
here in most of the cases, although IMC-2 follows it closely
in terms of cluster quality. On various images analyzed in the
comparison process, the global silhouette values of SOC are
found to be well above that of the other clustering techniques in

most of the cases, and other well-known validation indices used
here for the analysis also support the superiority of SOC to a
great extent. The few discrepancies that can be observed while
interpreting validation index results could be due to minute
differences in parameters on which computation in various
validation indices is based on. The results indicate that SOC
is able to retrieve all the relevant clusters from sample images
taken here. The cluster centers in the case of FCM are widely
separated. It is able to retrieve all the basic clusters, giving less
redundant clusters. The disadvantage with FCM is that it is
sensitive to the selection of initial partitions and may land up to
a local minimum of the criterion function as we can see from the
results of various images. The cluster validity values for some
of the clusters retrieved by K-means are more than those of
FCM, but those cases are very rare. The EM clustering results in
unsatisfactory values in terms of validation indices. K-medoid
results are very much close to the K-means result, but it never
shows the ability to outperform other clustering techniques, as
FCM dominates over it in most of the cases. IMC-2 results are
quite comparable and better than IMC-1 in most of the cases,
but its advanced-version SOC undoubtedly not only improvises
the results of IMC-1 but also dominates over all other clustering
techniques compared here including the IMC-2 results in terms
of better cluster quality and favorable validation indices’ values.
Also, there have been few cases as in Examples 2 and 3
mentioned here where IMC-2 results in mediocre clustering
as compared to IMC-1. Specifically, in those cases, the SOC
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TABLE VII
LIST OF CLUSTERING ALGORITHMS (EXISTING/CONCEPTUALIZED/PROPOSED) HAVING INITIAL THRESHOLD FUNCTION

WITH/WITHOUT MODIFICATION

TABLE VIII
COMPARISON OF TABLE VII CLUSTERING ALGORITHMS VIA WELL-KNOWN VALIDATION INDEX—SILHOUETTE INDEX

TABLE IX
COMPARISON OF TABLE VII CLUSTERING ALGORITHMS VIA WELL-KNOWN VALIDATION INDEX—SILHOUETTE INDEX

TABLE X
COMPARISON OF TABLE VII CLUSTERING ALGORITHMS VIA WELL-KNOWN VALIDATION INDEX—SILHOUETTE INDEX

technique is found to be highly acceptable with its encouraging
results as shown. Undoubtedly, experimental results based on
validation indices verify SOC as the superior clustering tech-
nique. Here, the silhouette index (GSI) is considered as the
ground truth which is the well-known validation index and has
been one of the best segmentation verifying techniques for long.
Without much ambiguity, it could only be GSI evaluating the
performance of cluster quality of various clustering techniques
compared in this paper as GSI is shown to be the robust strategy
for assessing the quality of clusters obtained [28], [29], but
including the evaluation results for the performance of cluster

quality by the other three cluster validity techniques PI, SI,
and DI also supports in large in drawing and verifying the
conclusion of SOC as being more robust and reliable. Also,
not only the extensive evaluation and performance analysis of
clustering techniques in the discussed examples but also the
simulations and the mathematical proof of the convergence
property in computing the successive threshold function in each
of the iterations provided in Section III-E strongly confirm SOC
as the superior clustering technique with additional support.
But then, there still remains a slight ambiguity whether we
are obtaining the best results from SOC or there is need to
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further optimize the initial threshold function. To evaluate the
same, the required heuristic modifications are made in the initial
threshold function as shown in Table VII, and the clustering
results are compared in Tables VIII–X. From the results of
Tables VIII–X, it is clearly evident that hypothetical clustering
algorithms IMC-max and IMC-half are underperformers, and
thus, the modifications made in their threshold function could
not be justified. In Table X, both of the hypothetical algorithms
failed to create even optimum number of clusters. Thus, both
of the algorithms with heuristically modified threshold func-
tions are discarded. Again, as discussed already in this paper,
IMC-2 gave a slightly better result than IMC-1 in Table VIII
but failed to show any improvement in the analysis of the
second and third sample images. Also, it is to be noted that,
in IMC-2, modification is made to the threshold function by
externally multiplying a factor and not by making any inherent
changes in the threshold function. Therefore, first, this could
not be called an inherent modification in the initial threshold
function, and second, the SOC algorithm clearly outperforms
the result of IMC-2 or of any other techniques discussed earlier,
thereby proving the superiority of mathematically modified and
iteratively optimized algorithm over any heuristic modifications
which could be made in the initial threshold function with no
mathematical justification. Hence, the same initial threshold
function is taken in SOC as defined originally for producing
comparatively better quality clusters. Overall, SOC gives the
finest clustering results with most of the analyzed images,
and the optimizing factor included in its algorithm helps it in
attaining the best possible results with much improved quality
for the obtained clusters.

V. CONCLUSION

This paper proposes an advanced and optimized version
of the IMC technique as SOC. The performances of a few
well-known clustering techniques, e.g., K-means, FCM, EM,
K-medoid, IMC-1, and IMC-2, are compared with that of
the proposed SOC technique for the segmentation outcomes.
During implementation, we have found that EM fails to yield
some of the clusters and has not been as competitive as other
clustering techniques. IMC-2 is expectedly giving fair results in
most of the cases, but owing to the estimation of the additional
factor in its threshold function in heuristic manner, the potential
of the IMC-1 technique was not fully tapped. This problem has
been eliminated in the SOC by optimizing its threshold function
via interpolation to extract the best possible clustering results
from it. The performance of SOC is found to be the best in most
of the cases followed by IMC-1, IMC-2, and FCM in terms of
GSI values and several other validation indices as shown in the
results section.
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