

Indian Institute of Technology, Kanpur Department of Mathematics and Statistics
 Statistics PhD Admission Test - 2019
 Date : May 9, 2019

Name:
Time: One hour

Roll/Application Number:
Maximum Marks $=60$
Category (Tick \checkmark anyone) : GEN
OBC-NCL/EWS
SC/ST/PwD

Instruction

1. This question paper consists of 20 questions each carrying 3 marks.
2. The questions are MSQ type, i.e, each question may have more than one correct answer.
3. You will get full 3 marks for full correct answer, 0 for all other cases.
4. This question-cum-answer booklet must be returned to the invigilator before leaving the examination hall.
5. Please enter your answers only on this page in the space given below.

Q. No	Answer						
1		6		11		16	
2		7		12		17	
3		8		13		18	
4		9		14		19	
5		10		15		20	

Please turn over

1. Let $f:[-1,1] \rightarrow \mathbb{R}$ be a continuous function such that it is differentiable on $(-1,1)$.
(a) If $f(-1)=-1$ and $f(1)=1$, then $f(x)=x$ for all $x \in[-1,1]$.
(b) If $f(-1)=f(1)$, then the equation $f^{\prime}(x)=0$ has at least one solution in $(-1,1)$.
(c) If $f^{\prime}\left(-\frac{1}{2}\right)<f^{\prime}\left(\frac{1}{2}\right)$, then for any $y \in\left[f^{\prime}\left(-\frac{1}{2}\right), f^{\prime}\left(\frac{1}{2}\right)\right]$ there exists $x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$ such that $f^{\prime}(x)=y$.
(d) If $f^{\prime}(0)=0$, then $\sup _{x \in[-1,1]} f(x)=f(0)$.
2. Let $A=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3}: 0 \leq x^{2}+y^{2} \leq \frac{\pi^{2}}{4}, 0 \leq z \leq \sqrt{x^{2}+y^{2}}\right\}$. Then the value of the integral

$$
\iiint_{A} \cos (z) d x d y d z
$$

is
(a) π
(b) 2π
(c) 0
(d) 1
3. Consider the matrix $I_{n}+\mathbf{a b}^{T}$, where I_{n} is the $n \times n$ identity matrix, and \mathbf{a} and \mathbf{b} are non-null vectors. The number of non-zero, distinct eigenvalues of this matrix are:
(a) 1
(b) 2
(c) 3
(d) n
4. Suppose that X is a proper random variable, i.e., $P(-\infty<X<\infty)=1$, and $\lim _{N \rightarrow \infty} N(P(|X| \geq N+1))=\infty$. Which of the following statements is(are) correct:
(a) $\lim _{N \rightarrow \infty} P(X<-N)=0$.
(b) $\lim _{N \rightarrow \infty} P(X \geq N)=0$.
(c) $E(|X|)<\infty$.
(d) $E(|X|)$ is not finite.
5. Let A be a positive definite matrix, and suppose that $A^{-1}=\left(\left(a^{i j}\right)\right)$ and $e_{1}=(1,0, \ldots, 0)^{T}$. Then

$$
\left[\begin{array}{cc}
A & e_{1} \\
e_{1}^{T} & a^{11}
\end{array}\right] \text { is }
$$

(a) Positive definite
(b) Positive semi-definite
(c) Negative definite (d) Negative semi-definite.
6. Consider the testing of hypothesis problem $H_{0}: X \sim f_{0}$ against $H_{1}: X \sim f_{1}$, where the probability mass functions f_{0} and f_{1} are as given below :

$x:$	-4	-3	0	1	2	5
$f_{0}:$	0.05	0.20	0.30	0.15	0.25	0.05
$f_{1}:$	0.15	0.30	0.05	0.05	0.25	0.20

Then which of the following statements is(are) correct:
(a) The MP level 0.15 test is randomized, but the MP level 0.1 test is non-randomized.
(b) The MP level 0.1 test is randomized, but the MP level 0.15 test is non-randomized.
(c) The MP level 0.15 and level 0.1 tests are both randomized.
(d) The MP level 0.15 and level 0.1 tests are both non-randomized.
7. Suppose that X_{1}, \ldots, X_{n} are i.i.d. Bernoulli (p) random variables, i.e., $\mathbf{P}\left(X_{1}=1\right)=p$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Then
(a) $4 \operatorname{Var}\left(X_{1}\right) \leq 1$
(b) If $p>\frac{1}{2}$, then $\mathbf{P}\left(S_{n}=0\right)>\mathbf{P}\left(S_{n}=n\right)$ for $n \geq 10$
(c) X_{1}^{2} has the same distribution as $X_{2} X_{3}$ for any value of $p \in[0,1]$
(d) If $n p \rightarrow \lambda(>0)$ as $n \rightarrow \infty$, then the distribution of S_{n} can be approximated by $\operatorname{Poisson}(\lambda)$ distribution.
8. Consider three events A, B and C with $\mathbf{P}(A)>0$, where A and B are mutually independent. Furthermore, B and C are mutually exclusive, and D^{c} denotes the complement of any event D. Then
(a) A^{c} and B^{c} are also mutually independent
(b) B^{c} and C^{c} are also mutually exclusive
(c) If A and B are mutually exclusive, then $\mathbf{P}(A \cup B \cup C)=\mathbf{P}(A)-\mathbf{P}(A \cap C)+\mathbf{P}(C)$
(d) If $\mathbf{P}(B)>0$, then $\mathbf{P}(C \mid A \cap B)=0$.
9. Let (X, Y) has the joint p.d.f. $f(x, y)=2$ if $0 \leq x \leq y \leq 1$, and $=0$, otherwise.

Let $a=E\left(Y \left\lvert\, X=\frac{1}{2}\right.\right)$ and $b=\operatorname{Var}\left(Y \left\lvert\, X=\frac{1}{2}\right.\right)$. Then $(a, b)=$
(a) $\left(\frac{3}{4}, \frac{7}{12}\right)$
(b) $\left(\frac{1}{4}, \frac{1}{48}\right)$
(c) $\left(\frac{1}{4}, \frac{7}{12}\right)$
(d) $\left(\frac{3}{4}, \frac{1}{48}\right)$
10. $\frac{1}{2 \pi^{2}} \int_{-\infty}^{\infty} \frac{\left(\pi+2 \tan ^{-1}(x)\right)}{1+x^{2}}$ equals
(a) $\frac{1}{2}$
(b) 1
(c) $\frac{1}{4}$
(d) None of (a), (b) and (c)
11. Consider the model $E\left(Y_{1}\right)=2 \beta_{1}+\beta_{2}, E\left(Y_{2}\right)=2 \beta_{1}-\beta_{2}, E\left(Y_{3}\right)=\beta_{1}+\alpha \beta_{2}$, with uncorrelated errors having zero mean and a constant variance σ^{2}. Let $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ be the best linear unbiased estimators of β_{1} and β_{2}, respectively. The value of α for which $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are uncorrelated and the corresponding variances of $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are
(A) $\alpha=0, \quad \operatorname{Var}\left(\hat{\beta}_{1}\right)=6 \sigma^{2}, \quad \operatorname{Var}\left(\hat{\beta}_{2}\right)=2 \sigma^{2}$
(B) $\alpha=-1, \quad \operatorname{Var}\left(\hat{\beta}_{1}\right)=6 \sigma^{2}, \quad \operatorname{Var}\left(\hat{\beta}_{2}\right)=3 \sigma^{2}$
(C) $\alpha=-1, \quad \operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{\sigma^{2}}{6}, \quad \operatorname{Var}\left(\hat{\beta}_{2}\right)=\frac{\sigma^{2}}{3}$
(D) $\alpha=0, \quad \operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{\sigma^{2}}{6}, \quad \operatorname{Var}\left(\hat{\beta}_{2}\right)=\frac{\sigma^{2}}{2}$
12. Let X_{1}, \ldots, X_{n} be i.i.d. random variables from a Gamma distribution $G(\alpha, \lambda)$ with probability density function (p.d.f.)

$$
f(x ; \alpha, \lambda)=\frac{1}{\Gamma(\alpha) \lambda^{\alpha}} e^{-\frac{x}{\lambda}} x^{\alpha-1}, \quad x>0 ; \quad \alpha, \lambda>0 .
$$

If m_{k}^{\prime} and m_{k} are, respectively, the $k^{t h}$ raw and central moments of the sample, then which of the following statements is (are) correct?
(a) m_{1}^{\prime} converges in probability to $\alpha \lambda$, (b) m_{2}^{\prime} does not converge in probability to $\alpha(\alpha+1) \lambda^{2}$,
(c) m_{2} converges in probability to $\alpha \lambda^{2}$, (d) m_{2} does not converge in probability to $\alpha \lambda^{2}$.
13. A 2^{5} factorial experiment is conducted in a randomized block design in which the blocks are constructed by confounding $A B, B C D$ and $A B C D E$. The total number of effects getting confounded and the degree of freedom carried by the treatment sum of squares are
(a) 3 and 24 , respectively
(b) 3 and 31 , respectively
(c) 7 and 24 , respectively
(d) 7 and 31, respectively.
14. Consider the multiple linear regression model $y=X \beta+\epsilon$, where y is a $n \times 1$ vector of n observations on the dependent variable, X is a non-stochastic $n \times p$ full column rank matrix of n observations on p explanatory variables, β is a $p \times 1$ vector of fixed regression coefficients, and ϵ is a $n \times 1$ vector of random errors with mean null vector and non-null covariance matrix Ω. The bias vector and covariance matrix of ordinary least squares estimator of β are
(a) β and $\left(X^{\prime} X\right)^{-1}$, respectively
(b) null vector and $\left(X^{\prime} \Omega X\right)^{-1}$, respectively
(c) null vector and $\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1}$, respectively
(d) β and $\left(X^{\prime} \Omega X\right)^{-1} X^{\prime} X\left(X^{\prime} \Omega X\right)^{-1}$, respectively
15. X_{1}, \ldots, X_{n} be a random sample from the uniform distribution $U[\theta-1, \theta+1]$, where $\theta \in(-\infty, \infty)$ is unknown. Let $X_{(1)}=\min \left(X_{1}, \ldots, X_{n}\right)$ and $X_{(n)}=\max \left(X_{1}, \ldots, X_{n}\right)$. Which of the following statements is(are) true?
(a) Minimal sufficient statistic is complete.
(b) $X_{(1)}$ is an MLE of θ.
(c) MLE of θ is not unique.
(d) $X_{(n)}+X_{(1)}$ is an ancillary statistic.
16. $\left\{X_{t}\right\},\left\{Y_{t}\right\}$ and $\left\{\epsilon_{t}\right\}$ are three mutually independent sequence of random variables. Here $\left\{X_{t}\right\}$ and $\left\{\epsilon_{t}\right\}$ are both i.i.d. sequence of $N(0,1)$ random variables, and $\left\{Y_{t}\right\}$ is an i.i.d. sequence of $N(1,1)$ random variables. Further, $Z_{t}=\epsilon_{t}+\epsilon_{t-1}$. Which of the following statements is(are) true?
(a) $P_{t}=\left(1-Y_{t}\right) Z_{t}+X_{t}$ is a covariance stationary process that is NOT a white noise
(b) $Q_{t}=Z_{2 t}+Z_{t-1}$ is a covariance stationary process
(c) $R_{t}=Z_{2 t}-Z_{2 t-1}$ is a white noise process
(d) $S_{t}=Y_{t}+\left(1-Z_{t}\right)$ is a strict stationary process
17. Let $f_{\rho}(x, y)$ denote the joint probability density function of bivariate normal distribution with mean vector $\underline{O}=(0,0)^{t}$ and the variance-covariance matrix

$$
\Sigma=\left[\begin{array}{ll}
1 & \rho \\
\rho & 4
\end{array}\right]
$$

where $|\rho|<2$. Let $(X, Y)^{t}$ be a random vector having the joint probability density function

$$
g(x, y)=\frac{1}{4} f_{\frac{1}{2}}(x, y)+\frac{3}{4} f_{1}(x, y), \quad-\infty<x, y<\infty .
$$

Then
(A) $\operatorname{Cov}(X, Y)=\frac{7}{8}$
(B) $\operatorname{Var}(X-Y)=\frac{13}{4}$
(C) $\operatorname{Var}(X+Y)=\frac{17}{4}$
(D) $\operatorname{Cov}(Y+X, Y-X)=2$
18. Customers are arriving in a Super Market according to the Poisson Process $\{N(t): t \geq 0\}$ with intensity $\lambda=2$ arrivals per hour. Let $S_{n}(n=1,2, \ldots)$ denote the waiting time for the arrival of the $n^{\text {th }}$ customer. Define

$$
p=\operatorname{Pr}\left(S_{3} \geq 2\right), \quad q=E(N(4) \mid N(1)=2), \quad r=\operatorname{Cov}(N(4), N(2)) \quad \text { and } \quad s=\operatorname{Var}\left(S_{1} \mid N(2)=1\right)
$$

Then
(A) $p=4 e^{-2}$
(B) $q=8$
(C) $r=4$
(D) $s=\frac{1}{3}$
19. Let X_{1}, \ldots, X_{n} be a random sample from the following probability density function:

$$
f(x \mid \lambda)=\lambda e^{-\lambda x} ; \quad x>0
$$

Here $\lambda>0$. The prior on λ is $\operatorname{Gamma}(a, b)$, where the probability density function of a $\operatorname{Gamma}(a, b)$ is

$$
\pi(x \mid a, b)=\frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-b x} ; \quad x>0, \quad a>0, \quad b>0 .
$$

Which of the following statements is(are) correct :
(a) The Bayes estimate of λ with respect to the squares error loss function exists for any $n>1$.
(b) The Bayes estimate of λ with respect to the absolute error loss function exists for any $n>1$.
(c) $100(1-\alpha) \%$ credible interval of λ, for $0<\alpha<1$ exists and it is unique.
(d) As n tends to ∞, the Bayes estimate of λ with respect to the squared error loss function, tends to the maximum likelihood estimate of λ.
20. A $M \times M$ matrix $\mathbf{P}=\left(\left(p_{i j}\right)\right)$, is called a stochastic matrix if $p_{i j} \geq 0$, and $\sum_{j=1}^{M} p_{i j}=1$, for $i=1, \ldots, M$. A stochastic matrix \mathbf{P} is called a doubly stochastic if $\sum_{i=1}^{M} p_{i j}=1$, for $j=1, \ldots, M$. Which of the following statements is(are) correct:
(a) If \mathbf{P} is a stochastic matrix, then \mathbf{P}^{m} is also a stochastic matrix for $m=1,2, \ldots$.
(b) If \mathbf{P} is a doubly stochastic matrix, then \mathbf{P}^{m} is also a doubly stochastic matrix for $m=1,2, \ldots$
(c) If \mathbf{P} is a stochastic matrix, then there exists a stochastic matrix \mathbf{Q}, such that $\mathbf{P}=\mathbf{Q}^{2}$.
(d) If \mathbf{P} is a stochastic matrix (not necessarily symmetric), then it has at least one real eigenvalue.

Space for rough work

