

Indian Institute of Technology Kanpur Department of Mathematics and Statistics PhD Admission Test for Mathematics (2019-II)

Date: 02 December 2019

Name (In BLOCK letters):

Roll/Application Number:

Category (Tick the appropriate one) : GEN/OBC-NCL/EWS/SC/ST/PwD

Instructions

1. This question booklet consists of 20 questions, divided into four sections, with 5 questions in each section.

2. Each question may have more than one correct options.

3. Each question carries 3 marks.

4. An examinee will be awarded 3 marks for a totally correct answer. For the questions containing multiple correct options, 1 mark will be given for partially correct answers, provided no wrong option has been chosen in addition. In all other cases, no marks will be awarded.

5. This question-cum-answer booklet must be returned to the invigilator before leaving the examination hall.

6.	Please enter	your answers	ONLY or	this page	in the space	given below.
----	--------------	--------------	---------	-----------	--------------	--------------

Secti	Section A		Section B		Section C		Section D	
Q. No.	Answer							
1		6		11		16		
2		7		12		17		
3		8		13		18		
4		9		14		19		
5		10		15		20		
Marks		Marks		Marks		Marks		

Total marks obtained:

Notations and conventions

Throughout this question paper, the following notations and conventions will be adopted:

- 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ denote the set of all integers, rationals, real numbers and complex numbers respectively.
- 2. For $p \in [1, \infty)$, $L^p(\mathbb{R})$ denotes the set of all measurable functions $f : \mathbb{R} \longrightarrow \mathbb{C}$ with the property that $\int_{\mathbb{R}} |f(t)|^p dt < \infty$.
- 3. $L^{\infty}(\mathbb{R})$ stands for the set of all bounded measurable functions from \mathbb{R} to \mathbb{C} .
- 4. $\mathbb{D}^2 := \{z \in \mathbb{C} : |z| < 1\}$ is the open unit disk in \mathbb{C} .
- 5. $\mathbb{H}^2 := \{x + iy \in \mathbb{C} : y > 0\}$ is the upper half plane in \mathbb{C} .
- 6. $\widehat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ is the *Riemann sphere*.
- 7. For $n \in \mathbb{N}$, we let $S^n := \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : x_1^2 + \dots + x_{n+1}^2 = 1\}.$
- 8. For $n \in \mathbb{N}$ and a field \mathbb{K} , $M_n(\mathbb{K})$ denotes the set of all $n \times n$ matrices with entires from \mathbb{K} . When $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , we assume that $M_n(\mathbb{K})$ is identified with \mathbb{K}^{n^2} by the following map

$$(a_{ij})_{i,j=1}^n \longmapsto (a_{11}, \cdots, a_{1n}, \cdots, a_{n1}, \cdots, a_{nn}),$$

and thus equipped with the natural metric topology. Consequently, the subgroups $GL_n(\mathbb{K})$, $SL_n(\mathbb{K})$ etc. inherit the subspace topology from $M_n(\mathbb{K})$.

9. Given any commutative ring R with identity and $a \in R$, (a) denotes the principle ideal in R generated by the element a.

Section A

- 1. Let $g : \mathbb{R} \longrightarrow \mathbb{R}$ be a bounded continuous function. Choose the correct statement(s) from the following:
 - (a) The sequence $\left\{\int_{x_n}^{y_n} g(t) dt\right\}_{n=1}^{\infty}$ is Cauchy for any pair of Cauchy sequences $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ in \mathbb{R} .
 - (b) The function defined by

$$(x,y)\mapsto \int_x^y g(t)\,dt\,, \ \text{for all } (x,y)\in \mathbb{R}^2,$$

may not be differentiable at every point of \mathbb{R}^2 .

- (c) The function defined in (1b) is continuous on \mathbb{R}^2 but not uniformly continuous on \mathbb{R}^2 .
- (d) If $g(x_0) \neq 0$, then one can find open intervals I, J in \mathbb{R} containing x_0 such that the set

$$\mathbb{S} := \left\{ (x, y) \in I \times J : \int_x^y g(t) \, dt = 0 \right\}$$

is the graph of some continuously differentiable function $\varphi: I \longrightarrow J$, i.e.,

$$\mathcal{S} = \{ (x, \varphi(x)) : x \in I \}.$$

- 2. Let f be a continuous real valued function on \mathbb{R} with compact support. Pick out the correct statement(s) from below:
 - (a) $f(\mathbb{R})$ is measurable.
 - (b) The Lebesgue measure of $f(\mathbb{R})$ can be 0 even when f is nonconstant.
 - (c) The boundary of $f^{-1}(-\infty, \alpha)$ has positive measure for at most countably many $\alpha \in \mathbb{R}$.
 - (d) For every $p \in [1, \infty]$, there exists a continuous function $g : \mathbb{R} \longrightarrow \mathbb{R}$ which vanishes identically on $\mathbb{R} \setminus f(\mathbb{R})$ but $g \notin L^p(\mathbb{R})$.
- 3. Let $\gamma : [0,1] \longrightarrow \mathbb{C}$ be continuously differentiable and γ^* denote its range. Assume $\gamma(0) = \gamma(1)$. Define $\eta_{\gamma} : \mathbb{C} \longrightarrow \mathbb{C}$ by the following

$$\eta_{\gamma}(z) = \begin{cases} \int_{\gamma} \frac{dw}{w-z} & \text{if } z \in \mathbb{C} \setminus \gamma^* \\ 1 & \text{if } z \in \gamma^* \end{cases}$$

Find the true statement(s) from below:

- (a) The restriction of η_{γ} on $\mathbb{C} \setminus \gamma^*$ is locally constant.
- (b) η_{γ} vanishes at infinity, i.e. $\forall \varepsilon > 0$, there exists a compact subset K such that $|\eta_{\gamma}(z)| < \varepsilon$ holds for any $z \notin K$.
- (c) η_{γ} does not vanish identically on the complement of any compact subset of \mathbb{C} .

Mathematics

- (d) None of the above.
- 4. Let f be an entire function. We define $\varphi: (0,\infty) \longrightarrow [0,\infty)$ by

$$\varphi(t) := \sup_{|z|=t} |f(z)|, \text{ for all } t > 0.$$

Which of the following statement(s) is/are always true?

- (a) φ is bounded.
- (b) φ has a zero, i.e. $\exists t_0 \in (0, \infty)$ such that $\varphi(t_0) = 0$.

(c)
$$\varphi(t) \xrightarrow[t \to \infty]{} 0.$$

- (d) φ is continuous except at countably many points in every closed and bounded interval $[a, b] \subseteq (0, \infty)$.
- 5. Let \mathscr{H} be a Hilbert space over \mathbb{C} . Consider a bounded linear operator $T : \mathscr{H} \longrightarrow \mathscr{H}$ such that $||Tv|| \leq ||v||$, for every $v \in \mathscr{H}$. Denote the *adjoint* of T by T^* , which is defined by the following property:

$$\langle Tv, w \rangle = \langle v, T^*w \rangle$$
, for all $v, w \in \mathscr{H}$.

Pick the FALSE statement(s) from the following:

- (a) $T^*v = v \Longrightarrow Tv = v$, where $v \in \mathscr{H}$.
- (b) The converse of (5a) holds true.
- (c) If T is an isometry (i.e. ||Tv|| = ||v||, for all $v \in \mathscr{H}$) then $T^*T = I$, where I is the identity operator on \mathscr{H} .
- (d) None of the above is true.

Section B

- 6. Consider the group $\mathbb{Z}/2019\mathbb{Z}$ with addition modulo 2019. Which of the following groups admit(s) an homomorphism onto $\mathbb{Z}/2019\mathbb{Z}$?
 - (a) $\mathbb{Z}/26247\mathbb{Z}$ with respect to addition modulo 26247.
 - (b) \mathbb{Q} with respect to usual addition.
 - (c) $\{z \in \mathbb{C} : \exists n \in \mathbb{Z} \text{ such that } z^n = 1\}$ with respect to usual multiplication of complex numbers.
 - (d) $\{z \in \mathbb{C} : |z| = 1\}$ with respect to usual multiplication of complex numbers.
- 7. Let R be a commutative ring with identity. Let $a \in R$ be such that $a^{2019} = 0$ and u be a unit in R. Then the cardinality of the quotient ring R/(u+a) is
 - (a) 1
 - (b) same as that of R.
 - (c) 2019.
 - (d) 2018.
- 8. Consider the subfields $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{7})$ of \mathbb{C} . Which of the following statements is/are true?
 - (a) They are isomorphic as abelian groups.
 - (b) They are isomorphic as vector spaces.
 - (c) They are isomorphic as rings.
 - (d) They are isomorphic as fields.
- 9. Let V be the subspace of the vector space of all 5×5 real symmetric matrices with the property that characteristics polynomial of each element in V is of the form $x^5 + ax^3 + bx^2 + cx + d$. Then the dimension of V is:
 - (a) 15.
 - (b) 14.
 - (c) 10.
 - (d) 12.
- 10. Suppose that A is a 5×5 real matrix all of whose entries are 1. Find the correct one(s) from the statements given below.
 - (a) A is not diagonalizable over \mathbb{R} .
 - (b) A is idempotent.
 - (c) A is nilpotent.
 - (d) The minimal polynomial and the characteristics polynomial of A are not same.

Section C

- 11. Let $f, g: X \longrightarrow Y$ be continuous maps where X is an arbitrary topological space and Y is a Hausdorff space. Find the true statement(s) from the following:
 - (a) The subset $\{x \in X : f(x) = g(x)\} \subseteq X$ is closed in X.
 - (b) Even if $f \neq g$, there can exist a dense subset $D \subseteq X$ such that f(x) = g(x) for all $x \in D$.
 - (c) If $f: X \longrightarrow Y$ is injective then X is also a Hausdorff topological space.
 - (d) None of the above statements is true.

12. The function given by $z \mapsto \frac{az+b}{cz+d}$, where $a, b, c, d \in \mathbb{R}$ such that ad - bc > 0, is a

- (a) holomorphic map from \mathbb{D}^2 onto itself with an holomorphic inverse.
- (b) holomorphic map from \mathbb{H}^2 onto itself with an holomorphic inverse.
- (c) holomorphic onto function on $\mathbb C$ with an holomorphic inverse.
- (d) holomorphic map from $\widehat{\mathbb{C}}$ onto itself with an holomorphic inverse.
- 13. Which of the following statements is/are true?
 - (a) If $X \subseteq \mathbb{R}^2$ is path connected, then \overline{X} is also path connected.
 - (b) Let $X \subseteq \mathbb{R}$. Then X is connected if and only if X is path connected.
 - (c) For $n \in \mathbb{N}$, let N and S be respectively the points $(0, \ldots, 0, 1)$ and $(0, \ldots, 0, -1)$ in \mathbb{R}^{n+1} . Then $S^n \setminus \{N, S\}$ is path connected.
 - (d) The set $X = \{(x, y) \in \mathbb{R}^2 : xy = \pm 1, x > 0\}$ is path connected.
- 14. Consider the function $f: (0, \infty) \longrightarrow \mathbb{R}$ defined by $f(x) = \sin\left(\frac{1}{x}\right)$, for all $x \in (0, \infty)$. Pick the correct statement(s) from the following:
 - (a) f has countably many fixed points.
 - (b) For any a > 0, the restriction map $f|_{(a,\infty)} : (a,\infty) \longrightarrow \mathbb{R}$ has infinitely many fixed points.
 - (c) The restriction map $f|_{(0,1]}: (0,1] \longrightarrow \mathbb{R}$ has finitely many fixed points.
 - (d) The restriction map $f|_{[1,\infty)}: [1,\infty) \longrightarrow \mathbb{R}$ has no fixed point.
- 15. Consider the following functions:

$$f: GL_n(\mathbb{C}) \longrightarrow \mathbb{C} \setminus \{0\}, f(A) := \det A, \text{ for all } A \in GL_n(\mathbb{C});$$

and

$$g: \mathbb{R} \longrightarrow M_2(\mathbb{R}), \ g(x) := \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}, \text{ for all } x \in \mathbb{R}.$$

Choose the correct one(s) from the statements given below:

(a) Let \mathscr{K} denote the Cantor set and $GL_n(\mathscr{K})$ denote the set of all $n \times n$ invertible matrices having entries from \mathscr{K} . Then $f(GL_n(\mathscr{K}))$ is closed.

- (b) Let $\mathscr K$ be as above. Then $g(\mathscr K)$ is closed.
- (c) $GL_n(\mathbb{C})$ has infinitely many closed subgroups containing $SL_n(\mathbb{C})$.
- (d) All the above three statements are true.

Section D

16. If the function $K: [0,1] \times [0,1] \to \mathbb{R}$ is such that

$$u(t) = c_1 + c_2 t + \int_0^t K(t, s) f(s) \, ds$$

is the general solution to the ODE

$$\frac{d^2}{dt^2}u(t) = f(t), \ 0 < t < 1,$$

where f is continuous on [0, 1], then K(t, s) =

- (a) s t.
- (b) t s.
- (c) t(s-t).
- (d) s(t-s).
- 17. The differential equation

$$y = x\frac{dy}{dx} - \left(\frac{dy}{dx}\right)^2$$

has more than one solutions passing through the point

- (a) (0,1).
- (b) (1,1).
- (c) (2,1).
- (d) (2, -1).

18. Let $u \in C^2(\mathbb{R} \times [0,\infty))$ solves the initial value problem for the wave equation in one dimension:

$$\begin{cases} u_{tt}(x,t) - u_{xx}(x,t) = 0 & \text{ for all } (x,t) \in \mathbb{R} \times [0,\infty) \\ u(x,0) = f(x) & \text{ for all } x \in \mathbb{R} \\ u_t(x,0) = g(x) & \text{ for all } x \in \mathbb{R} , \end{cases}$$

where f and g are infinitely differentiable functions with compact supports. For t > 0, define

$$K(t) := \frac{1}{2} \int_{-\infty}^{\infty} u_t^2(x, t) dx$$
 and $P(t) := \frac{1}{2} \int_{-\infty}^{\infty} u_x^2(x, t) dx.$

Choose the correct one(s) from the following statements.

- (a) The function K(t) + P(t) is a constant function of time.
- (b) The function K(t) + P(t) can be a non constant function of time.
- (c) The function K(t) + P(t) is always continuous.

- (d) The function K(t) + P(t) is a polynomial of degree 3.
- 19. Let $u : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a C^1 function (i.e., both partial derivatives are continuous). Consider the following problem:

$$\begin{cases} u_t(x,t) + u_x(x,t) = 0 & \text{ for all } (x,t) \in \mathbb{R}^2 \\ u(x,x) = 1 & \text{ for all } x \in \mathbb{R} \,. \end{cases}$$

Which of the following statements is/are correct?

- (a) The above problem has unique solution.
- (b) The above problem has infinitely many solutions.
- (c) There exists a solution u of the above problem such that u(1,0) = 5.
- (d) The above problem has at most finitely many solutions.
- 20. Consider the following function

$$\phi: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}, \, \phi(r) := \frac{1}{2r} \int_{1-r}^{1+r} u(s) \, ds, \text{ for all } r \in \mathbb{R} \setminus \{0\};$$

where u'' = 0 on \mathbb{R} with $u(1) \neq 0$. Then

- (a) $\phi'(r) = 0$ for all $r \in \mathbb{R} \setminus \{0\}$.
- (b) $\phi(1) = u(1)$.

(c)
$$\lim_{r \to 0} \phi(r) = u(0).$$

(d) ϕ is an odd function.