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Scale invariant Standard Model

We are considering standard model of particel physics, including
gravitation, such that the action respects local scale invariance :

S = / d*z/—g {‘TﬁHTHR +¢" (D, H)(D,H) — N(H'H)?

1 1
_Zg”ygaﬁ(AuaAvB + B,uoszB + G,LLCEGU,B) - EQ”UQQ'B(E;L&EUB) +Sferméons

where

R=R—-6fV,S"—6f25,S"
D,H = (D, — fS,)H
E,, = 8,5, — 9,8,

Here H is the Higgs field, A,,,, B,,,, G, and £, represent the field strength
ternsors for the U(1),SU(2),SU(3) and Weyl vector field respectively.



The scale transformations can be seen as the product of general co-
ordiante transformations and the following set of transformations,
called Pseudo Scale transformations,

:I:-',u: —
1
g;&u — ﬂzg“u and g,r“u — Eg#u
1

(I)F("E) — E{I)('E)
A=A,
/ 1

V=Y

Hence as long as general covariance is preserved, pseudo-scale
invariance is equivalent to local scale invariance.



Localization of this scale transformation introduces a vector field, S, .

Correspondingly, we covariantly change the derivatives of the fields and
metric due to this local symmetry as follows:

0u® — (O — [S,)P
Oy Gop — (0, +2fS,)gap and 0, g“-ﬁ — (0, — QfSﬁ)g“-ﬁ
3
OV — (O — §f5u)‘1‘[
And under scale transformation,

1
S, — S, — —

fap, In(A)
The transformation properties of fermion fields are deduced from the
Dirac lagrangian in curved space time.

It can be shown that the Dirac lagrangian remains the same even after
these substitutions. So, S, does not interact with any of the leptons or
quarks, etc..
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The model

Let us consider the scale invariant lagrangian for a real scalar field as
follows :

-1 A, 1
L=—Z®R + Sg"DdD,® — T8 — g F By

where, D, ® = (9, — fS,)® and E,, = 9,S, — 9,5, .

j

Here we considered a real scalar field, instead of Higgs field, as a
prototype, to study the cosmological implications of scale invariant
gravitational action.
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Field equations and EOMs

Now, taking the variation of the above action gives us the modified
Einstein’s field equations and the equations of motion of the scalar and
vector fields respectively as follows.

Modified Einstein’s field equations :

4
(I)ZB.W + 8)\(@2)0)‘”” + ((1)2);,0;0DMVPU - BTMV
where,
1
B, = Ru — §Rguv + 3f2gWS -8 — 6f28MS,,,
Chw = —=3fS"gu +3F (9,50 +9,5,)
g 1 a a a
D" = =599 + 9095) + 9w g™
Tuv = —Esvguy —+ D:L(I)D,V(I) — E‘u,pEUggpo— ,
1 A 1 o
and Lgy = ig“ D, oD, d — qu* — Zg“'og EwE, .



Equation of motion for the scalar field :

gV VB — fOV, S — f25,5"P + AP + gqni —0

Equation of motion for the vector field :
3 v
VB = (1 + 76) fOD"®
The symmetry is broken through cosmological symmetry breaking.
Here we assume that, at leading order, all the fields are independent of
space coordinates and depend only on time. In this case the equations
simplify considerably for,

O(z) = n(t) + ()
Su() = (So(t) + Co(x), Si(t) + Ci(x))

The equation of motion for Sy turns out to be fSy = % Thus we choose
So = 0 as a gauge choice, which makes n = constant.



The resulting 0-0 and i-i components of the Einstein’s equations can then be
written as,

2d2

5 4
77&2—6

2a? 2 2a?
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and

S 72 2,2Q2
o (G G 413\ , S5, 38\ fn=S;
2—+—=|==|—n"- 1
3 ( +a2) B[ ! 2a2+ " 2 2a?

respectively. And the equations for n and 5; become,
a a2 4 A 38\ f2S5%n?
3 21> =212 2 1 1
77(&4‘&2) 8[277—'_(_'_2) 2a2 ]’
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Cosmological solution

Now, we try to solve the field equations and eqautions of motion mentioned
above.

The equation of motion for §;, is similar to that of a damped harmonic
oscillator, with weakly time-dependent frequency and decay terms. We seek a
solution of the form

S@' :nz-S

where n; is a constant unit vector. The solution for & can be expressed as,
_ — [Ldt —i [widt — [2dt+i [wdt
S = Re{Ae Jagdt=iJwndt 4 Bo=Jgzditifw },

where, A and B are assumed to be slowly varying functions of time and w? =
wQ—HTz,wQ: (14—%)1“2772:]\4‘% and H = a/a.



By substituting this solution in EOM of S; and neglecting second derivatives
of A and B, we get,

A w1 . H k1 l-:sin_lﬁ

A + 2w1 Z4w1 A \/w

B _ H ko —isin_l%
—|_ 2w1 o 7/4(.01 = B = \/_ 2 ’

where, k1 and ks are constants of integration and are, in general, complex.
Since w >> H we see that A and B vary very slowly with time compared to
other terms in .S;. The most rapidly varying terms are those containing f widt
in the exponent. Due to these terms, S; fluctuates rapidly with time.

Following this, we obtain a leading order solution and a correction to this
leading order solution.



At leading order we can assume that A and B are time independent. The
leading order solution for & can then be written as

1
S = %(A’COSQ+B'sin9)

where 6 = [widt and A’ & B’ are some real constants. We define,

| 1
o L 1 obe
Ps: 202 " +2a2w ’
L . 1
and —3Ps, = ——8-2-|——w257:2

202 ' 2a?

as the energy density and pressure terms corresponfing to vector field in modified
Einsteins’ equations. We find that, at leading order,

Ps; — # (AI2 —|—B’2) w2 ’

Ps, = 0.

(3



We next calculate the corrections to the leading order result by taking into
account the time dependence of the coefficients A and B. Now we have,

S = —[Qcos(f— )+ Psin(0— x)] = —

ywia ywia
§ = 2 [§<3—1)U+(w1—¢)vl

U

Vara |2 \a
where,
U = NcosO+ Msinf ,V =—Nsintl + M cos6
and M = Pcoszx+Qsinx ,N =—Psinz+ (Qcoszx.
Here, z = 3sin™' 2L = Llcos™' 1 4 = H /4w; = —/H and P & Q are some

real constants.



With this substitution in the field equations, we get,

_ (PP QOMs (P24 QN (PP +Q%)(A” + B®)Ms
psi = 2a3 48Ba3 Mg * 63n2a8 ’
PS _ (P2 T QQ)(AIZ + BIQ)MS

: 248n2ab '

The leading term varies as a™ as already found earlier. Here, we also find two

subleading terms. One of these falls as 1/a?, also suppressed by a factor of ')\’
and the second term, falls much faster, as =%, as the universe expands. We
also get a small correction term to Pg,, which also decays rapidly as a9, as the
universe expands.



The 0-0 component of the Einstein’s equations can, now, be written as,

Bﬁ 2 2 A 4 (P2—|_Q2) 2 H
oF 2?2 = 2 N
g TR R

4

which can be cast in the form,

1 = QA -+ Q.S'q;
where
Op =22 Qg =25
Per Per
A P? 4+ (Q? H 3
pr = —n' ,ps@:( g) W - L) and po = L2
4 2w1a 4

This expression looks like the ACDM model with Q3; = Qg,.

2 2
We also find that, P? + Q? ~ BMffJ\%SMO '




Cosmological evolution of different
components including radiation

Here, we setup a set differential equations to study the dynamical evolution
of different components of the universe, including radiation.
For this study, it is convenient to introduce the folllowing dimensionles vari-

ables:
X %2_22 Q4
2 S?
v 36a2nz
282
() e
ht= 32 a:;;}(}? =fr-

Here, 25, = {21 4 {25 and the prime denotes derivative with respect to Ina.



Thus, the modified Einstein’s field equations and the equations of motion

of the scalar and vector fields take the form of the following set of differential
equations :

X' =X(2-2X%-277%),

Y = —Y(2X2% + 72) — gXZ,
7' =7(1—2X%— 7%) + gXY,
R' = 2R(2X*+ Z?),

where, kK = 4/ %% = 3MpMg /v/2mpy and ' denotes derivative with respect
to Ina. So,
fl . df

"~ dlna

The typical evolution of these variables from the beginning of radiation dom-

inated era(lna = —29) to current era(lna = 0) have been studied and presented
in the following graph.



As seen here, the vector field
undergoes rapid oscillations
depending on its mass:
higher the mass(k), higher
the frequency of oscillations
and vise versa.



Conclusions

» In the present work, a locally scale invariant generalization of GR has
been analyzed.

» The symmetry is broken by a recently introduced mechanism called,
cosmological symmetry breaking.

» The equations of motion lead to a small, but non-zero, cosmological
constant or Dark energy.

» The cold dark matter arises in the form of vacuum oscillations of the
Weyl’s gauge field.

» A numerical study has been carried out and the standard LambdaCDM
model paradigm has been reproduced.
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