PHY690J: Group Theory and its application to High Energy Physics Instructor: Joydeep Chakrabortty

Topics

- 1. Discrete groups
- 2. Lie group:
 - (A) Character and hear measure
 - (B) Young Tableux
- (i) Compact connected groups: U(1), SU(N), Spin(2N), Spin(2N+1), Sp(2N)
- (ii) Non-compact group: Lorentz group
- 3. Representation Theory:
 - (A) Roots, Weights, Cartan matrix, Dynkin diagrams
 - (B) Embeddings and Branching Rules.
 - (C) Gauge Theory
- 4. Invariant Polynomial construction: path to Lagrangian
- 5. Grand Unified Theory
- 6. Spinors and helicity Amplitude

Prerequisites

Quantum Field Theory-I, Particle physics, Mathematical Methods-I+II.

References

- (1) Rubakov: Classical Theory of Fields.
- (2) Dixon: A brief Introduction to Modern Amplitude Methods.
- (3) Slansky: Group Theory for unified model building.