LIGO-G140147-v1

Quantum noise in Gravitational Wave Detectors

Koji Arai / Stan Whitcomb – LIGO Laboratory / Caltech

Slide courtesy of L. Barsotti

♦ SHOT NOISE: Photon counting noise

$$h_{shot} \propto \frac{1}{L} \sqrt{\frac{1}{P}}$$

 \diamond RADIATION PRESSURE NOISE:

Back-action noise caused by random motion of the mirrors

$$h_{rad} \propto \frac{1}{f^2 L} \frac{\sqrt{P}}{m}$$

Measurement frequency

"Standard Quantum Limit"

$$h_{Quantum} = \sqrt{\frac{4\hbar}{m\Omega^2 L^2}} \sqrt{\frac{1}{2} \left(\mathbf{K} + \frac{1}{\mathbf{K}}\right)}, \qquad \mathbf{K} = \frac{4P\omega_0}{c^2 m\Omega^2}$$

$$h_{Quantum} \ge \sqrt{\frac{4\hbar}{m\Omega^2 L^2}} = h_{SQL}$$
 (*m* \rightarrow *m*/2 for FPMI)

h_{SQL} doesn't depend on the optical parameters of the interferometer,

just on the quantum mechanics of a harmonic oscillator mass

Slide courtesy of L. Barsotti

Optical noises

Quantum noises

Standard Quantum Limit (SQL)

Trade-off Between Shot Noise and Radiation-Pressure Noise
 Uncertainty of the test mass position due to observation

Quantum noise in Advanced LIGO

 Photon shot noise and radiation pressure noise will limit the detector sensitivity in the end

Figure 2: Baseline aLIGO Noise Budget (GWINC v2.0). 125 W input power; broadband RSE tuning.

Quantum noise reduction

$$h_{Quantum} = \sqrt{\frac{4\hbar}{m\Omega^2 L^2}} \sqrt{\frac{1}{2} \left(\mathbf{K} + \frac{1}{\mathbf{K}}\right)}, \qquad \mathbf{K} = \frac{4P\omega_0}{c^2 m\Omega^2}$$

- Make the interferometer longer
 > Needs new facility
- Heavier test masses & more optical power
 => Stored power of aLIGO will be 8ookW
 Have to deal with thermal effects / instabilities
- More complex optical configuration to shape optical response

Injection of squeezed states of vacuum

 What is "squeezing"?
 Quantized Electromagnetic Fields Quadrature Field Amplitudes

Even when average amplitude is zero, the variance remains **X**2 => Zero-point "vacuum" fluctuation Vacuum fluctuations are everywhere => Comes into the interferometer ► X 1 from the open optical port and cause shot and radiation pressure noises

Squeezing

- The noise can be redistributed while keeping the minimum uncertainty product $\Delta X_1 \Delta X_2 = 1$ = Squeezed light
- Squeezed light is characterized by
 - Squeezing factor *r*

How much the noise is squeezed

$$\Delta X_1 = e^{-r}, \Delta X_2 = e^r$$

- Squeezing angle ϕ_{sqz} Which quadrature is squeezed

Particularly useful two states

Squeezing

- In practice, we inject squeezed "vacuum" from the dark port
- Squeezing angle needs to be fixed by a feedback control loop with regard to the field in the interferometer

Squeezing in action

Actual squeezer (LIGO H1 squeezer)

Sheila Dwyer PhD Thesis (2013)

Squeezing in action

- Shot noise reduction in GW detectors has already been realized since 2007
- Squeezed light injection experiment at the LIGO 40m

K.Goda et al, Nature Physics 4, 472 - 476 (2008)

Squeezing in action

Squeezing in GEO600 and LIGO H1 to reduce shot noise

- Ponderomotive effect
 - Vacuum fluctuations from the dark port produce amplitude and phase fluctuations in the arm cavities
 - Radiation pressure
 The test mass mechanical system work as a converter from the amplitude fluctuation to the phase fluctuation

Ponderomotive effect

Radiation pressure:

The test mass mechanical system work as a converter from the amplitude fluctuation to phase fluctuation

Homodyne detection

- In order to detect the signal (and noise) with a photodetector The output field needs to be mixed with a local oscillator field. cf. RF (or heterodyne) detection using RF sidebands
- Homodyne angle: Changes the projection of the GW signal field and output noise fields into the detection signal
- DC Readout
 A small (1~10pm) offset from the dark fringe is applied
 => Useful: The IFO beam itself becomes the LO field
 \$\vec{\phi_H}\$ is fixed at zero

Squeezed vacuum injection

Frequency dependent squeezing

Rotate squeezing angle to optimize the output noise field

Squeezed vacuum injection

Slide courtesy of L. Barsotti

High finesse detuned **"filter** cavity" which rotates the squeezing angle as function of frequency

Squeezed vacuum injection: technical issues

- The enemies of the squeezing
 - Optical Loss
 Optical losses works as beamsplitters to introduce normal vacuum fluctuation
 - Phase noise
 Wobbling of the squeezing angle causes
 leakage of the other quadrature into the squeezed quadrature

Optical loss & Squeezing phase noise

Phase noise mitigation

Slide courtesy of L. Barsotti

Invac OPOfor aLIGO

Let's move the OPO into the vacuum envelope on seismic isolated tables!

E. Oelker et al., Optics Express, Vol. 22, Issue 17, pp. 21106-21121 (2014) (P1400064)

Summary

- Quantom noise in GW detectors
 - Shot noise & Radiation pressure noise
- Squeezed vacuum injection
 - Shot noise reduction already demonstrated.
- Radiation pressure
 - Will eventually limit the sensitivity
 - Frequency Dependent squeezed vacuum injection will mitigate the radiation pressure noise
- Technical Issues: Optical loss & phase fluctuation
 - R&D on going