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Part I

Procedure
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1 Outline of the experiment

Want speed of motor to track sinusoids. Steps:

• Least squares system identification (sys-id).

• Recognition/////and/////////////////////compensation of plant’s dead zone.

• Design controller using loop-shaping.

• Simulation on PC.

• Deployment on experimental setup.
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2 Homework (HW) vs. Lab work (LW)

HW

Math model from Experiment 1

Loop-shaping (for tracking sinusoid)

Discretize controller

Simulate

Least squares sys-id

LW

Identify parameters of plant model

Loop-shaping (for tracking sinusoid)

Discretize controller

Write controller in C

Implement

• How well does sinusoid track reference sinusoid in theory & in practice?

• What control effort is needed for this tracking in theory & in practice?
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3 Dead zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/2
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• Plots taken at Vs = 12 V. • Vm = 0 when |u| ≤ 2 V.

• Vm ≈ u when u > 2 V.

• Vm is same as Vr.
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4 Dead zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2/2

Another representation of deadzone:
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• Overcoming deadzone — topic of another experiment.
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5 Least squares sys-id

Plant
u ω

• Prepare setup to apply u in OL and collect ω from motor.

• Input u(1),u(2),u(3), . . . forming the rectangular/triangular/sinusoidal waveform.

• Collect u(1),u(2),u(3), . . . and ω(1),ω(2),ω(3), . . . into terminal.log.

u u(1) u(2) u(3) · · ·

ω ω(1) ω(2) ω(3) · · ·

• Provided is readSID.m — Formed by replacing plots-related section of readplot.m
with sys-id code from sysid.m.

• Execute readSID.m to obtain K, a, b of K
s2+as+b

.
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6 Approximate 2nd order TF by 1st order TF

Generate a 1st order approxiation G(s) to K
s2+as+b

. Can use an m-file.
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7 Loop-shaping (1/4): Typical Gdes
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• In this experiment, ωg may not matter; only ωd does.

• Only a 1st order controller D(s) is needed. Can use a 1st order desired loop shape for
D(s)G(s).
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8 Loop-shaping (2/4): Example

DG = Gdes
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9 Loop-shaping (3/4): Mp←→ DD (from EE250)
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10 Loop-shaping (4/4): Determination of ωg

CL spec: ts

τ ≈ ts
5

ωb ≈ 1
τ

For Gdes set ωg ≈ ωb
(Really, ωg ≤ ωb ≤ 2ωg)

Simulate CL sys ts achieved?

Tweak ωg

No

Select this ωg
Yes

Red rectangles represent OL
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11 Discretization

a1s + a0
s2 + b1s + b0

ẋ1 = x2

ẋ2 = −b0x1 − b1x2 + u

y = a0x1 + a1x2

Simulation diagram
(or tf2ss)

x1(k+1) = x1(k) + ∆t x2(k)

x2(k+1) = −b0∆t x1(k) + (1− b1∆t)x2(k) + ∆t uk

yk = a0x1(k) + a1x2(k)

Euler’s approximation
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12 Simulate; LW: C code, Implement, Analyze

• Simulation: simsine.m

• Discretized controller −→ C code:

• Implement: As in demo slides

• Analyze: Compare results

x1(k + 1) = a11x1(k) + a12x2(k) + b1u(k)

x2(k + 1) = a21x1(k) + a22x2(k) + b2u(k)

y(k) = c1x1(k) + c2x2(k) + du(k)

In main-prog.c before main() insert float x1[2],x2[2];
In main() insert x1[0] = x2[0] = 0;

x1[1] = a11*x1[0] + a12*x2[0] + b1*u;
x2[1] = a21*x1[0] + a22*x2[0] + b2*u;

y = c1*x1[0] + c2*x2[0] + d*u;
x1[0] = x1[1];
x2[0] = x2[1];
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Part II

A solution to Problem Q2 of the pre-lab

In the lab, we will apply a sinusoidal voltage from a function generator (FG) to the dsPIC
microcontroller’s analog input. We will want the motor’s speed to track this sinusoidal input.

Design using loop-shaping, a controller of first order such that the closed-loop system will
track sinusoids of frequencies upto 7 Hz with ess ≤ 2% (in magnitude). For the settling time
(defined as “time to enter the x% tube with the intention of remaining in it”) do the best you
can achieve, given the other specifications, and given that the imperfections of the plant are
what they are. Hint: See EE250 lecture notes for a solution to this problem.
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Note that we have achieved the tracking of sinusoids of frequencies up to 7 Hz by setting
ωg ≈ 2500 rad/s, which means that the closed-loop bandwidth ωB will be approximately 2500
rad/s, which means that largest closed-loop time constrant is approximately 1/ωB = 0.0004 s.
So, the sampling period T will need to be 0.0004/10 = 0.00004 s. However, our µC permits a
sampling period of not less than 2 ms. So, this design is not implementable on our set up.

It may further be verified that the amplitude of the armature voltage needed to help provide
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such a bandwidth may well exceed the 15 V permitted by our power supply, and even the 24
V that the motor is permitted to take. So, what is the solution?

The solution is to examine what value of ωg is permitted by T = 0.002 s, and to shift the
above desired loop gain to the left such that its ωg is not greater than this value. Here are the
calculations of this ωg.

T = 0.002 s −→ τ ≈ 0.002×10 = 0.02 s −→ ωB ≈
1

τ
= 50 rad/s −→ ωg ≈ ωB = 50 rad/s.

So, the new task for the students is to find the maximum frequency sinusoids that can be tracked by a design

such as the above, and to then modify the above design to track this sinusoid.
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Part III

Least squares sys-id

We explain what least squares system identification is, not how it works.
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13 Bilinear transform and Z-transform
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Bilinear Transform = Tustin’s method
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• s-domain & z-domain — fictitious domains.

• s-domain eases work with differential equa-
tions, z-domain with difference equations.

• Bilinear transform is not the only way to go
G(s)↔ G(z).

• Ts limited by Nyquist sampling frequency.
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14 G(s)←→ G(z)

• Consider definitions of L and Z

G(s) = L{g(t)} ,
∫ ∞

t=0

g(t)e−stdt

G(z) = Z {g(k)} ,
∞∑
k=0

g(k)z−k

• Comparison suggests z = esTs ⇒ ln z = ln esTs ⇒ ln z = sTs.

∴ To convert G(s) to G(z), can substitute s = ln z
Ts

.

• Instead, easier to work with an approximation

z = esTs = e
sTs
2 e

sTs
2 =

e
sTs
2

e−
sTs
2

=
1 +

(sTs2 )
1! +

(sTs2 )
2

2! + · · ·

1 +
(−sTs2 )

1! +
(−sTs2 )

2

2! + · · ·
≈ 1 + sTs

2

1− sTs
2

• This is the bilinear transform
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15 How Z-transform used in our sys-id

• terminal.log has u(k) and ω(k) obtained as

u(k)
1
VS

ua
PWM

δ
H-bridge

Π
Motor

Vr

QE

ω

QEI module
(in dsPIC)

pulsesComputation
of ω

countω(k)

?

u(k) = u(t)|t=kTs

• Want a continuous-time TF G(s) of plant for loop-shaping. But only have discrete-time
data u(k) and ω(k).

• Let TF from u(k) to ω(k) be G(z). That is, G(z) = Z{ω(k)}
Z{u(k)} .

Then,

Step 1: Use u(k),ω(k) pairs to construct G(z).

Step 2: Use bilinear transform to go from G(z) to G(s).
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16 Step 1: Least squares sys-id (1/2)

• Let true G(z) be
Y (z)

U(z)
=

b1z
2 + b2z + b3

z3 + a1z2 + a2z + a3
.

• Want best estimate of b1, b2, b3, a1, a2, a3.

• Cross multiply:

b1z
2U(z) + b2zU(z) + b3U(z) = z3Y (z) + a1z

2Y (z) + a2zY (z) + a3Y (z).

• Multiply throughout by z−3:

b1z
−1U(z) + b2z

−2U(z) + b3z
−3U(z) = Y (z) + a1z

−1Y (z) + a2z
−2Y (z) + a3z

−3Y (z).

• Take Z−1 to obtain difference equation

b1u(k − 1) + b2u(k − 2) + b3u(k − 3) = y(k) + a1y(k − 1) + a2y(k − 2) + a3y(k − 3).

Important property of Z-transform used:

z−lX(z)↔ x(k−l) given X(z)↔ x(k).
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17 Step 1: Least squares sys-id (2/2)

Consider

b1u(k − 1) + b2u(k − 2) + b3u(k − 3) = y(k) + a1y(k − 1) + a2y(k − 2) + a3y(k − 3)

• Let σ = [b1 b2 b3 − a1 − a2 − a3]ᵀ.

• Suppose we have data

{u(k), y(k)}, k = 0, 1, . . . ,N

• Problem: Find σ such that this equation holds for this data.

I.E., find parameters of a TF that fits to input-output data.

• Let error in the fit be

ε(k,σ) = b1u(k − 1) + b2u(k − 2) + b3u(k − 3)− y(k)

− a1y(k − 1)− a2y(k − 2)− a3y(k − 3).

• Modified problem: Find σ to minimize J (σ) ,
∑N

k=0 ε
2(k,σ).

• If J (σ = σ0) = 0, then find best estimate σ̂ of σ0.
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