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Remember your Lab turn and come prepared. No additional explanations will be provided during 
your lab turn by the T.A. For your experiment you must come prepared to the lab. 

 For your experiments consult the notice board outside Physics 111A lab. 

 Use of mobile phone is strictly prohibited in the lab. 

 Students aren’t allowed in the lab without proper shoes. 

 

Few optional experiments based on error analysis are available. Those who are interested may ask 
Mr. Arvendra Singh Rathaur (In-charge UG Lab) for the handout and perform the experiments when 
you are free. 
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✓ To provide an opportunity for learning through doing, observing and testing. 

✓ To become familiar with the instruments and gain experience in handling them. 

✓ To acquire the skill of making the optimum use of the given apparatus. 

✓ To establish for yourself the working of physical principles. 

✓ To become aware of limitations of the accuracy with which measurements can be made. 

✓ To relate textbook information to the behavior of the physical world around you. 

 

As scientists and technologists, you will be dealing with instruments and apparatus of various kinds 

throughout your career. You will greatly benefit from the beginning if you take a serious and 

enthusiastic attitude towards experimental work.  There is no substitute for the experience that you 

gain by carrying out even simple laboratory measurements. 

 

➔ Laboratory work is the heart of physics and it should be taken seriously. Your grades in this course are 

based on your performance in the weekly sessions, the reports you write and on how well you do in 

the examinations. 
 

➔ Preparation: Before coming to the laboratory session, you must carefully read the instructions given 

for performing the experiment of the day. Unless you come fully prepared with this background 

material you will not be able to complete the required work and, what is more, you will miss the 

opportunity of learning all aspects of the experiment.  Lack of background often makes the experiment 

uninteresting and much more time has to be spent later for an understanding of the points missed.  

Thus, for your own benefit, prior study of the instructions sheets is very important. Also, if you are 

unprepared, you will not do well in the quiz conducted by your instructor during the session. In some 

cases, you may find it helpful to go to the website of PHYWE, (www.phywe.de) who has supplied some 

of the experiments. Short video clips of some of the experiments are available in the lab. You may take 

these from Mr. A.S. Rathaur, In-charge UG Lab. 

 

➔ Printed Report Sheets are available in the bookstore. All work must be done in ink.  You must get at 

least one observation of each kind checked and signed by your instructor, failing which your report will 

not be graded.  You must complete all experimental and report writing work during the session.  Every 

observation made must be recorded directly on the Report Sheet. No rough record is allowed. The 

completed Report must be submitted within the 3- hour lab period on the same day. 

http://www.phywe.de/


 

➔ Equipment needs your care: On reaching the laboratory you should check the apparatus provided and 

ascertain if there are any shortages or malfunctions.  Set up the equipment in accordance with the 

instructions.  Proceed carefully and methodically.  Remember that scientific equipment is expensive 

and quite susceptible to damage.  So, handle it carefully.  If the apparatus is complicated, consult the 

instructor before you proceed with the actual performance of the experiment. Make the required 

measurements and record them neatly in tabular form.  Double-check to make sure that you have 

recorded all the necessary data. 

 

➔ Acceptable results with given apparatus: It is more important to see what result you get with given 

apparatus rather than what is the ‘correct’ result.  The apparatus given to you is capable of certain 

accuracy and your result may be completely acceptable even if it differs from ‘correct’ results.  You 

must learn to do things on your own even if you might make mistakes some time. 

 

➔ Graphs: Each graph should occupy one complete sheet; the information as to quantities plotted, scale 

chosen and units should be mentioned clearly on the graph in ink. 

 

➔ Following is the Format of the Report: 
 

• Your name, roll number, instructor’s name, date, title of the experiment. 

• Essential diagram of the experiment and the formulae used. 

• Templates of the tables and the format are attached at the end of each experiment. You 

are expected to use this format in your report sheet. You must come with the prepared 

report sheet on the lab day. 

• Relevant substitutions and results expressed with the estimated error and units. 

• Conclusions including what you learnt from the experiment. 

• Precautions you took to do the experiment. Measure sources of error. Criticism of the 

design. Suggestions for improving the experiment. 

 

➔ You must bring manual, pen, pencil, eraser, graph sheet, calculator, transparent ruler and report 

sheet with you. 

 

➔ You must keep your workplace neat and clean and leave the lab. Neat and tidy. 

 

➔ Punctuality: 
 

• Each report should be submitted on the day of your experiment. 

• Please come to the lab on time, as being late may mean deduction of marks. 

 
 
 
 
 
 
 
 
 
 
 



 

 

 

This chapter tries to give you a working knowledge of data analysis which would be essential 
in all experiments that you do. Specifically, the following topics are covered: 

 

• Graphical Analysis 

• Error Analysis  

• Significant Figures 
 

Please try and do the home assignments given in this chapter. During regular lab sessions you will perform 

the experiment, analyze the data, write the report and submit by 1:15 pm before leaving the lab. 
 

 
 

 It is said that a picture is worth a thousand words. A graph can succinctly represent an ocean of 

information. Scientists and engineers use them as visual aids to recognize and communicate patterns (‘all 

knowledge is pattern recognition!’), discover relationships between physical variables, and extract 

meaning and characteristics from data. In our experiments we are going to rely on them heavily, hence 

we will begin by mastering the fundamentals of plotting graphs. Follow the guidelines given below for all 

your graphs: 
 

• Use sharp pencils. 

• Draw on full page of graph paper (compressed ones don’t help analysis). Use appropriate scale factors. 

• Plot the dependent variable on the vertical y-axis and the independent variable on the 𝑥-𝑎𝑥𝑖𝑠. 

• Graphs are meaningless unless the axes are labeled. Label them and mention units in parentheses. 

• Give your graph an appropriate title. 

• If the quantities being plotted are within an error range indicate that in error bars. 
 

Virtually all the patterns that you will encounter in this Laboratory course will have one of the following 

mathematical forms: 
 

i) 𝑦 = 𝑚𝑥𝑛 + 𝑐, where 𝑛 is some exponent and m is some numerical constant, 

ii) 𝑦 = 𝑎𝑒𝑏𝑥 + 𝑐, where 𝑎, 𝑏 & 𝑐 are constants. 

The constants will have physical significance, and hence an important part of analyses of laboratory data 

involves finding the values of 𝑛 and 𝑚 in (𝑖) and 𝑎, 𝑏 and 𝑐 in (𝑖𝑖) which best describe a set of data pairs 

(𝑥, 𝑦). 
 

 

Can you make qualitative sketches of these functions? 
For (i) above, consider the cases for which  𝒏 = 𝟏, 𝒏 > 𝟏, 𝟎 < 𝒏 < 𝟏? 



 

 
 

The force 𝐹 of wind resistance acting on a ball is found to depend on the diameter 𝑑 of the 

ball. Plot the following data: 
 

𝒅 (𝒊𝒏 𝒄𝒎) 2.0 4.0 6.0 8.0 10.0 

𝑭 (𝒊𝒏 𝑵) 0.11 0.46 0.90 1.83 2.51 
 

Examine the graph you have just constructed. Identify which of the above functions it 

resembles qualitatively. 

Modify the given variables so that the graph can be cast into the form of a straight line and 

obtain the equation that best represents the relationship. 
 

 

 

 

The time 𝑡 it takes for a volume of water to drain from a tub is found to depend on the 

diameter 𝑑 of the drain hole. Repeat the above exercise for the following data: 
 

𝒅 (𝒊𝒏 𝒄𝒎) 1.0 2.0 3.0 4.0 5.0 

𝒕 (𝒊𝒏 𝒔𝒆𝒄) 3620 860 420 230 140 

 

 

 

 

The famous astronomer Johannes Kepler took approximately 20 𝑦𝑒𝑎𝑟𝑠 and 900 𝑝𝑎𝑔𝑒𝑠 of 

calculations to determine that there was a definite relationship between the distance of 

the planets from the sun and the amount of time it takes to orbit the sun. You know this 

relationship as Kepler’s third law of planetary motion. Based on the data below determine 

the relationship: 
 

Planet Distance (in miles) Period (in years) 

Mercury 36,000,000 0.241 

Venus 67,270,000 0.616 

Earth 90,000,000 1.000 

Mars 141,000,000 1.880 

Jupiter 483,900, 000 11.860 

Saturn 887,200,000 29.460 

Uranus 1,784,000,000 84.3000 

Neptune 2,793,000,000 164.070 

Pluto 3,675,000,000 248.000 
 

 



 

 

Exponential relations describe many natural phenomena. Among these are growth and 

decay processes (such as in radioactivity, cooling etc.), and absorption phenomena. Below 

an unusual case of such an exponential relation is given. The data consists of 

measurements of width of successive growth spirals of a particular seashell. 
 

𝑵 (𝒔𝒑𝒊𝒓𝒂𝒍 𝒏𝒐. ) 1 2 3 4 5 6 

𝑾𝒊𝒅𝒕𝒉 (𝒊𝒏 𝒎𝒎) 2.5 4.5 6.5 11.5 20.0 31.0 
 

Obtain a linear formulation of the given data (hint: semi-logarithmic). Determine the 

mathematical form (including all constants involved) of the relationship. 
 

 
 

The voltage decay as a function of time across a capacitor in an RC circuit is given below. 
 

𝑻𝒊𝒎𝒆 (𝒊𝒏 𝒔𝒆𝒄) 𝑽𝒐𝒍𝒕𝒂𝒈𝒆 (𝒊𝒏 𝑽) 

6.2 5.53 

8.7 4.89 

10.0 4.58 

12.5 4.04 

16.3 3.35 

18.4 3.05 

22.5 2.45 

25.0 2.16 

28.5 1.85 

32.9 1.44 

38.8 1.09 

42.0 0.92 

47.8 0.70 

52.0 0.56 

55.4 0.47 

62.5 0.33 

67.2 0.26 
 

1. Obtain the value of characteristic decay time constant   by plotting the data in a semi-

logarithmic paper. 

2. Obtain the initial value of the voltage across the capacitor. 
 

 
 

In an experiment, paper rings of different diameter are mounted on a vibrating table to 

study their resonant frequencies. Depending on the diameter, the rings show resonant 

vibration for different frequencies of the vibrating table. The data from this experiment is 

given below. 
 

𝑫𝒊𝒂𝒎𝒆𝒕𝒆𝒓 𝒐𝒇 𝒕𝒉𝒆 𝒓𝒊𝒏𝒈 (𝒄𝒎) 3.4 4.6 6.4 8.7 10.9 13.2 

𝑹𝒆𝒔𝒐𝒏𝒂𝒏𝒕 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 (𝑯𝒛) 63.48 30.77 13.38 6.24 3.58 2.19 
 

1. Plot the resonant frequency 𝑣𝑠 the diameter of the ring in a log-log graph to obtain 

the mathematical relationship between the two variables. 

2. From your graph predict the resonant frequency for a ring of diameter 20 cm. 
 



 

Errors in graphical analysis 
 

 The usual way of indicating errors in quantities plotted on a graph paper is to draw error bars.  

The curve should then be drawn so as to pass through all or most of the bars. 
 

Straight line fits: 

 Here is a simple method of obtaining a straight line fit on a graph.  Having plotted all the points, 

locate, visually, the centroid (𝑥̅, 𝑦̅). 
 

 Then consider all straight lines through the centroid (use a transparent ruler) and visually judge 

which one will represent the data the best. Determine its slope 𝑚. 
 

 Having drawn the best line, estimate the error in its slope 𝑚, as follows.  Rotate the ruler about 

the centroid until its edge passes through the top of the error bars at the ‘top right’ and through the bottom 

of the error bars at the ‘bottom left’.  This new line gives one extreme possibility, let the difference 

between the slopes of this and the best line be ∆𝑚1.  Similarly determine ∆𝑚2 corresponding to the other 

extreme.  The error in the slope may be taken as 
 

∆𝑚 =
∆𝑚1 + ∆𝑚2

2√𝑛
 

 

where n is the number of data points.  The factor √𝑛 comes because evaluating the slope from the graph 

is essentially an averaging process. 
 

 It should be noted that if the scale of the graph is not large enough, the least count of the graph 

may itself become a limiting factor in the accuracy of the result.  Therefore, it is desirable to select the 

scale so that the least count of the graph paper is much smaller than the experimental error. 
 

 

 
 

To err is human; to evaluate and analyze the error is scientific. 
 

➔ 
 

Every measured physical quantity has an uncertainty or error associated with it.  An experiment, in 

general, involves (𝑖) direct measurement of various quantities (primary measurements) and (𝑖𝑖) 

calculation of the physical quantity of interest which is a function of the measured quantities.  An 

uncertainty or error in the final result arises because of the errors in the primary measurements (assuming 

that there is no approximation involved in the calculation).   
 

Error analysis, therefore, consists of (𝑖) estimating the errors in all primary measurements, and (𝑖𝑖) 

propagating the error at each step of the calculation.  This analysis serves two purposes.  First, the error 

in the final result is an indication of the precision of the measurement and, therefore, an important part 

of the result.  Second, the analysis also tells us which primary measurement is causing more error than 

others and thus indicates the direction for further improvement of the experiment. 
 

 For example, in measuring ‘g’ with a simple pendulum, if the error analysis reveals that the 

errors in ‘g’ caused by measurements of 𝑙 (𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚) and 𝑇 (𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑) are 

0.5 cm/sec2 and 3.5 cm/sec2 respectively, then we know that there is no point in trying to devise a more 

accurate measurement of 𝑙.  Rather, we should try to reduce the uncertainty in 𝑇 by counting a larger 

number of periods or using a better device to measure time.  Thus, error analysis prior to the experiment 

is an important aspect of planning the experiment. 



 

Nomenclature of Errors 
 

i) Discrepancy denotes the difference between two measured values of the same quantity. 

ii) Systematic errors occur in every measurement in the same way – often in the same direction 

and of the same magnitude – for example, length measurement with a faulty scale.  These errors 

can, in principle, be eliminated or corrected by proper analysis and calibration. 

iii) Random errors cause the result of a measurement to deviate in either direction from its true 

value.  We shall confine our attention to these errors and discuss them under two heads: 

estimated and statistical errors. 

iv) A measurement which has small random errors has high precision. A measurement which has 

small random errors as well as systematic errors has high accuracy. 
 

 

➔ 
 

 An estimated error is an estimate of the maximum extent to which a measured quantity might 

deviate from its true value.  For a primary measurement, the estimated error is often taken to be the least 

count of the measuring instrument.  For example, if the length of a string is to be measured with a meter 

rod, the limiting factor is the accuracy in the least count, i.e., 0.1 cm. A note of caution is needed here. 
 

 What matters really is the effective least count and not the nominal least count.  For example, 

in measuring electric current with an ammeter, if the smallest division corresponds to 0.1 𝑎𝑚𝑝., but the 

marks are far enough apart so that you can easily make out a quarter of a division, then the effective least 

count will be 0.025 amp.  On the other hand, if you are reading a Vernier scale where three successive 

marks on the Vernier scale (say 27𝑡ℎ , 28𝑡ℎ , 29𝑡ℎ) look equally well in coincidence with the main scale, the 

effective least count is 3 times the nominal one. Take another example. In a null-point electrical 

measurement, suppose the deflection in the galvanometer seems to remain zero for all values of 

resistance R from 351 Ω to 360 Ω.  In that case, the uncertainty in 𝑅 is 10 Ω, even though the least count 

of the resistance box may be less. Therefore, make a judicious estimate of the least count. 
 

➔ 
 

 If we make a measurement 𝑥1 of a quantity 𝑥, we expect our observation to be close to the 

quantity but not exact.  If we make another measurement, we expect a difference in the observed value 

due to random errors.  As we make more and more measurements, we expect them to be distributed 

around the correct value, assuming that we can neglect or correct for systematic errors.  If we make a 

very large number of measurements, we can determine how the data points are distributed in the so-

called parent distribution.  In any practical case, one makes a finite number of measurements and one 

tries to derive the true value of the quantity as best as possible. 
 

 Consider 𝑁 measurements of quantity 𝑥, yielding values 𝑥1, 𝑥2, . . . , 𝑥𝑁 . One defines the 

arithmetic mean, which is an average value of the quantity 𝑥 as, 
 

𝑥̅ =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 

 

 The deviation 𝑑𝑖 of any measurement 𝑥𝑖  from the mean 𝑥̅ of the parent distribution is defined 

as |𝑥𝑖 − 𝑥̅|. Note that if 𝑥̅ is the true value of the quantity being measured, 𝑑𝑖 is the true error in 𝑥𝑖  . 



 

 There are several indices one can use to indicate the spread (dispersion) of the measurements 

about the central value, e.g., the mean value. One can define the average deviation 𝑎𝑣𝑔𝑑𝑒𝑣 as the mean 

of the magnitudes of the deviations (absolute values of the deviations from the mean). 
 

𝑎𝑣𝑔𝑑𝑒𝑣 =
1

𝑁
∑(|𝑥𝑖 − 𝑥̅|)

𝑁

𝑖=1

 

 

 This can be used as a measure of the dispersion in the observations about the mean. However, 

a more popular measure of the dispersion is the standard deviation 𝜎, defined as 
 

𝜎2 =
1

𝑁
∑(𝑥𝑖 − 𝑥̅)2

𝑁

𝑖=1

= (
1

𝑁
∑𝑥𝑖

2) − (𝑥̅)2 

 

𝜎2 is known as variance and the standard deviation 𝜎 is the square root of the variance.  In other words, 

it is the root mean square (rms) of the deviations. 
 

 The above expression underestimates 𝜎for small 𝑁. Statisticians tell us that a better expression 

to use is the following: 
 

𝜎2 =
1

𝑁 − 1
∑(𝑥𝑖 − 𝑥̅)2

𝑁

𝑖=1

 

 

where the denominator is 𝑁 − 1 instead of 𝑁.  In practice, for large 𝑁 the distinction between these 

formulae is unimportant. 

 The mean 𝑥̅ is a parameter which characterizes the information we are seeking when we 

perform an experiment.  The mean is, of course, not only the parameter is used to characterize a 

distribution, but it is the most popular one and also the best when an experiment is performed under near 

ideal conditions*. It can be proved that if we use the mean of the measured values for calculating the 

deviation, the sum of the square of the deviations is a minimum.  The standard deviation is simply related 

to this minimum value of the square of the deviations and is used for specifying error quantitatively. 

 The standard deviation characterizes the uncertainties associated with our experimental 

attempts to determine the “true” value. 𝜎, for a given finite number of observations, is the uncertainty in 

determining the mean of the parent distribution.  Thus, it is an appropriate measure of the uncertainty in 

the observations. 
 

Repeated measurements 
 

 Suppose a quantity 𝑥 is measured 𝑛 times. The best estimate for the actual value of 𝑥 is the 

average 𝑥̅ of all the measurements. If errors are assumed to be randomly distributed, the error in the 

mean value is given by, 
 

𝛿𝑥̅ =
𝛿𝑥

𝑁
 

 

where 𝛿𝑥 is the error associated with a single measurement. You may use the estimated error in each 

primary measurement as 𝛿𝑥. Hence one way of minimizing random errors is to repeat the measurement 

many times. Note that repeating a measurement has no effect on a systematic error. 
 

              *       In place of mean, one can characterize a distribution by the median (the middle value) which is a robust measure of central tendency. Median 

would give a better estimate than the mean if the data set is contaminated by too much noise and contains outlier points. Mean gives all the data points 

equal weight and hence can be easily affected by an outlier while the median would automatically reject an outlier. The appropriate width to use with the 

median is the mean deviation which is the average absolute deviation calculated from the median. One can show that the average absolute deviation is a 

minimum if it is calculated about the median. 



 

➔ 
 

Calculation of the error associated with 𝒇, which is a function of measured quantities 𝒙, 𝒚 and 𝒛 
 

Let 
 

 𝑓 = 𝑓(𝑥, 𝑦, 𝑧) ........................ (1) 
 

Taking the differential 

 

 d𝑓 =
𝜕𝑓

𝜕𝑥
d𝑥 +

𝜕𝑓

𝜕𝑦
d𝑦 +

𝜕𝑓

𝜕𝑧
d𝑧 ........................ (2) 

 

Eq. (2) relates the differential increment in 𝑓 resulting from differential increments in 𝑥, 𝑦, 𝑧.  Thus, if the 

errors in 𝑥, 𝑦, 𝑧 (denoted as 𝛿𝑥, 𝛿𝑦, 𝛿𝑧) are small compared to 𝑥, 𝑦, 𝑧 respectively, then we may say 

 

 δ𝑓 = |
𝜕𝑓

𝜕𝑥
| 𝛿𝑥 + |

𝜕𝑓

𝜕𝑦
| 𝛿𝑦 + |

𝜕𝑓

𝜕𝑧
| 𝛿𝑧 ........................ (3) 

 

where the modulus signs have been put because errors in 𝑥, 𝑦 and 𝑧 are independent of each other and 

may be either positive or negative. Therefore, the maximum possible error will be obtained only by adding 

absolute values of all the independent contributions. (All the 𝛿’s are considered positive by definition). 

The use of (3) is especially simple in some simple cases. 

 

i) For addition or subtraction, the absolute errors are added, e.g., if 𝑓 =  𝑥 +  𝑦 –  𝑧, then 

 𝛿𝑓 = 𝛿𝑥 + 𝛿𝑦 + 𝛿𝑧 ........................ (4) 

ii) For multiplication and division, the fractional (or percent) errors are added, e.g., if 𝑓 =
𝑥𝑦

𝑧
, then 

 |
1

𝑓
| 𝛿𝑓 = |

1

𝑥
| 𝛿𝑥 + |

1

𝑦
| 𝛿𝑦 + |

1

𝑧
| 𝛿𝑧 ........................ (5) 

iii) For raising to constant powers, including fractional powers, the fractional error is multiplied by the 

power, e.g., if 𝑓 = 𝑥3.6, then 

 |
1

𝑓
| 𝛿𝑓 = 3.6 |

1

𝑥
| 𝛿𝑥 ........................ (6) 

 

 
 

 

 

 

 

 

 

 

 

Equation (3) is far too conservative. It totally ignores the cancellation of errors which 

happens when errors occur with opposite signs and thus overestimates the final error. It 

gives us an upper limit for the error in an experiment and thus we have 
 

δ𝑓 ≤ |
𝜕𝑓

𝜕𝑥
| 𝛿𝑥 + |

𝜕𝑓

𝜕𝑦
| 𝛿𝑦 + |

𝜕𝑓

𝜕𝑧
| 𝛿𝑧 

 

 

 



 

 
 

 A statement of result such as 𝑓 = 123.4678 ± 1.2331 cm contains many superfluous digits.  

Firstly, the digits 678 in quantity 𝑓 do not mean anything because they represent something much smaller 

than the uncertainty 𝛿𝑓. Secondly, 𝛿𝑓 is an approximate estimate for error and should not need more 

than one significant figure.  An acceptable expression would be 123.4 ± 0.2 cm. 

 No physical measurement is exact. For example, consider a meter scale, which has a least count 

of 1 mm used for measuring the length of a pencil. The reading, if we keep one end at the origin of the 

scale, might lie between say 8.5 cm and 8.6 cm. One might estimate the length as 8.52 cm, the final digit 

2 being an estimate of a part of a millimeter division on the scale. Perhaps the estimate of final digit could 

have been 3 or 1 instead of 2. In any case, we find that the length expressed as 8.52 tells us that the 

length lies between 8.53 and 8.51 – the measurement has 3 significant figures. A significant figure is 

reasonably trustworthy. The number of significant figures does not depend upon the decimal point. The 

length could have been written as . 0852 m or as 85.2 mm which mean exactly the same thing. Whenever 

we make a measurement, our reading should indicate the number of significant figures. Suppose we want 

to measure the area of a square whose sides are 8.52 cm with the final digit indicating the precision or 

accuracy of the measurement. In this case, the number has 3 significant figures. Then to what precision 

or accuracy do we know the area? We know 

𝐴 = 𝑙2 
 

 ⇒ ∆𝐴 = 2𝑙 × ∆𝑙 (∆𝑙 is the possible error in 𝑙 = 0.01 cm) 
 

⇒ ∆𝐴 = 2 × 8.52 × 0.01 = 17.04 × 0.01 ≈ 0.17 cm2 
 

Hence the area is known to an accuracy of 0.2 cm2 which means 
 

𝐴 = (8.52)2 cm2 = 72.6 cm2 (keeping only the first digit after the decimal point) 
 

In addition and subtraction carry the operation only as far as the first column of doubtful figure. 
 

(1) Addition of two lengths 

If 𝑙1 = 2.54 cm (known to 3 significant figures) 

and 𝑙2 = 10.29 cm (known to 4 significant figures) 

 𝑙1 + 𝑙2 = 12.83 cm  

(1) The doubtful figure is underlined. 

(1) On the other hand, 

if 𝑙1 = 2. 5 cm  

and 𝑙2 = 10.22 cm  

 𝑙1 + 𝑙2 = 12. 72 = 12. 7 cm  
 

(2) Multiplication of two lengths 

If 𝑙1 = 2.54 cm  and  𝑙2 = 10.29 cm  

 𝑙1 × 𝑙2 = 2.54 × 10.29 = 26. 1366 = 26.1 cm2  

(2) where we have rounded off keeping only the first doubtful figure.  In this case the second doubtful 

figure being 3 does not change the first doubtful figure in rounding off. 



 

 For rounding off the insignificant figures (doubtful figures after the first doubtful figure) are 

dropped, but the first doubtful figure (or the last significant figure) is unchanged if the figure dropped is 

less than 5.  It is increased by 1 if it is greater than 5. There are different practices for rounding off if the 

figure dropped is 5. You can take any of them. You can increase the digit by 1 in this case, if you so like. 

Alternatively, you may keep the digits after 5 also, keeping 2 significant figures in the error bar. 
 

Rules for Computation  
 

1. In addition and subtraction take only the first column that contains the doubtful figure.  Use the rule 

of rounding off mentioned earlier. 
 

2. In multiplication and division, carry the result to the same number of significant figures that are in the 

factor with the least number of significant figures. 
 

An Example 
 

» Consider the measurement of acceleration due to gravity g using the simple pendulum. We have, 
 

g =
4𝜋2𝑙

𝑇2
 

 

» where 𝑙 = length and 𝑇 = time period of the pendulum.  Suppose, 𝑙 = 95.2 cm and 𝑇 = 1.95 sec 
 

 g =
4𝜋2𝑙

𝑇2
= 988.388 cm/sec2 (obtained by calculator) 

 

» However, not all figures are significant.  To determine which figures are significant, we note 
 

∆g

g
= (

∆𝑙

𝑙
) + 2 (

∆𝑇

𝑇
) 

 

⇒
∆g

g
= (

0.1

95.2
) + 2 (

0.01

1.95
) ≈ 0.01 

 

which shows that the number of significant figures in this case is only 2. Indeed, ∆g ≈ 0.01 × g =

10 cm sec2⁄  which means that the second digit is uncertain and we should write the answer as g =

990 cm sec2⁄ . Note that ∆𝑙 and ∆𝑟 are not necessarily the least counts of the scale and the clock 

repeatedly used to measure the quantities. Depending on the circumstances they may be larger or even 

smaller than the least count. If the pendulum’s ends cannot be defined (located) precisely ∆𝑙 could be 

limited by this rather than least count of the scale used. Similarly, 𝑇 can read far more accurately than the 

clock’s least count by taking readings for the time taken for more than one oscillation. 
 

 

In each of the following measured quantities and their errors are given. A quantity to be 
calculated is defined in terms of the measured quantities. Calculate: (𝑎) the defined 
quantity, (𝑏) the error in the defined quantity, and (𝑐) the percentage error in the defined 
quantity. 
 

1) The quantity to be calculated is average velocity 𝑣 = 𝑥/𝑡 and the measured values are: 
 

 𝑥 = 1.748 ± 0.10 × 10−2 m , 𝑡 = (5.41 ± 0.05) × 10−3 s 
 

2) The quantity to be calculated is 𝐾, the kinetic energy. The measured values and errors 
are: 

 

𝑀 = 1.25 ± 0.05 kg , 𝑣 = 0.87 ± 0.01 m/s 
 

 

Reference: Introduction to Error Analysis by J.R. Taylor (University science books, CA) 2nd edition, 1997. 
 

 



 

 
 

 

Aim: 

 

• To determine the refractive indices of a glass prism at various wavelengths of mercury light. 

• To plot the dispersion curve for the given prism and calculate the dispersive power of the prism. 

• To obtain the coefficients in Cauchy's equation from the graph of (𝒏 − 𝟏) 𝑣𝑠 (𝟏
𝝀𝟐⁄ ). 

 

 
 

A prism splits white light into different colors because the refractive index of 

the material of the prism depends on the wavelength of light. This 

dependence can be written as 
 

 𝑛 = 𝑛0 + (
𝑘

𝜆2
) …………… (1) 

 

This means as the wavelength is increased, the refractive index decreases. 

𝐸𝑞. (1) can be rewritten as 
 

 n = 1 + A(1 +
𝐵

𝜆2
) ........................ (2) 

 
 

This is known as Cauchy's equation; the constant 𝐴 is called the coefficient of refraction and B is known 

as the coefficient of dispersion. Note that the coefficient of refraction is different from the index of 

refraction. Cauchy's equation is an approximation and applies reasonably well to many non-absorbing 

materials, in the optical region. 
 

When a parallel beam goes through the prism, getting 

refracted twice, the emergent beam bends through 

some angle with respect to the incident beam. This angle 

is called the angle of deviation. It changes with the angle 

of incidence and is minimum when the incident and 

emergent beams make equal angles with the 

corresponding refracting surfaces. The angle of 

minimum deviation 𝐷𝑚𝑖𝑛 is related to the angle of prism 

A and the refractive index 𝑛 of the material of the prism 

as 

 𝑛 =
sin (

𝐴+𝐷𝑚𝑖𝑛

2
)

sin (
𝐴

2
)

 ........................ (3) 

 

(𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) 

𝑭𝒊𝒈. 𝟐 

𝑫𝒎𝒊𝒏 

𝒓(= 𝒊) 
𝒊 

𝑭𝒊𝒈. 𝟏 
𝝀 

𝒏 



 

A narrow beam of light from a spectral line source (for example, a mercury source) which emits visible 

radiation of characteristic and known wavelengths is made incident on the prism. By measuring the 

minimum deviation corresponding to each wavelength we may establish the dependence of 𝑛 upon 𝜆. 
 

The dispersive power of a material is defined by, 

ω =
𝑛𝐵 − 𝑛𝑅

𝑛𝑌 − 1
 

 

 where 𝑛𝐵, 𝑛𝑅  and 𝑛𝑌 are refractive indices of material for blue, red, and yellow lights 

respectively. The reciprocal of the dispersive power is called the dispersive index and it lies between 20 

and 60 for most optical glasses. 
 

 
Limitations of Cauchy's equation 

The theory of light-matter interaction on which Cauchy based this equation was later found to be 

incorrect. In particular, the equation is only valid for regions of normal dispersion in the visible 

wavelength region. In the infrared, the equation becomes inaccurate, and it cannot represent regions of 

anomalous dispersion. Despite this, its mathematical simplicity makes it useful in some applications. 
 

The Sellmeier equation is a later development of Cauchy's work that handles anomalously dispersive 

regions, and more accurately models a material's refractive index across the ultraviolet, visible, and 

infrared spectrum. 
 

In its original and the most general form, the Sellmeier equation is given as 

𝑛2(𝜆) = 1 + ∑
𝐵𝑖𝜆

2

𝜆2 − 𝐶𝑖
𝑖

 

where 𝑛 is the refractive index, 𝜆 is the wavelength, and 𝐵𝑖 and 𝐶𝑖 are experimentally determined 

Sellmeier coefficients. 

 

 
 

Refractive index vs. wavelength for BK7 glass. Red crosses show measured values. Over the visible region 
(red shading), Cauchy's equation (blue line) agrees well with the measured refractive indices and the 
Sellmeier plot (green dashed line). It deviates in the ultraviolet and infrared regions. 



 

 
 

→ The essential parts of a spectrometer (𝑠𝑒𝑒 𝑓𝑖𝑔. 3) are 

» a telescope (𝑇) 

» a collimator (𝐶) which rigidly attached to the base 

» a prism table (𝐵) 

» a platform (𝑃) which carries two markings and their associated verniers 𝑉, 180° apart. 

→ The telescope and the platform can be independently rotated around a common vertical axis, their 

relative orientation being indicated by the reading of the markings on the divided circular scale which 

rotates integrally with the telescope. 

→ The prism table (𝐵) can also be independently rotated. It may be locked to the platform by means of 

the clamping screw 𝐺. 

→ By means of the clamping screw 𝐾, the telescope (𝑇) may be locked, when subsequent fine angular 

adjustment may be made by turning the screw 𝑀. 

→ The platform (𝑃) may be locked by the clamping screw 𝐿. When locked, the subsequent fine angular 

adjustment may be made by turning the screw 𝑁. 

→ The collimator is provided with a slit aperture the width of which can be adjusted by turning the slit 

adjustment screw 𝑆.  

 

eyepiece 
adjustment 
screw 

Prism 
Table 
(𝑩) 

telescope clamping 
screw (𝑲) 

prism table 
clamping screw (𝑮) 

Platform (𝑷) 

platform clamping screw 
(𝑳) 

telescope fine 
adjustment 
screw (𝑴) 

Verniers (𝑽) 

platform fine 
adjustment screw (𝑵) 

collimator convex 
lens adjustment screw 

slit adjustment 
screw (𝑺) 

𝑭𝒊𝒈. 𝟑 



 

𝐹𝑖𝑔. 4 shows the path of the light rays as they pass through a correctly adjusted spectrometer. All 

adjustments once made should not be disturbed. If they are accidentally altered the entire procedure 

should be repeated step by step. The instrument scale must be carefully read at the desired setting and 

for work of the highest precision both verniers are used. In the present case adequate accuracy will be 

obtained by using only one of them.  

 

 

 

 
 

 
Adjustment of the spectrometer: 

 

• Locate which is collimator and which is 

telescope. The one next to the lamp is 

collimator. Adjust the spectrometer if 

needed. Take care not to play with any 

knob or screw without reason. The 

spectrometer is reasonably adjusted and 

you may only have to perform the checks 

to ensure it. Check the following. Look at 

the slit through the collimator. It should 

be clear, sharp and rectangular in shape. 

You can increase or decrease the slit 

width to get this. It should be narrow but 

the whole rectangular area should be 

well illuminated. 

• Now bring the telescope in line with the collimator and look at the slit through the telescope. It should 

be a sharp image at the center of the field of view. 

• Level the prism table using a spirit level and three screws provided on the table if necessary. 

• See how the prism table can be rotated or locked. Also see how the telescope can be rotated and the 

angle can be measured using vernier scale given. 

𝑭𝒊𝒈. 𝟓 

𝑭𝒊𝒈. 𝟒 

Table 

𝑓𝑒 𝑓𝑡 𝑓𝑐 

Parallel Rays 

Collimator Telescope 
Eyepiece 

Light 
Source 

Slit 

Crosshairs 



 

 
Angle of minimum deviation and its measurement: 

 

• Put the prism on the prism table such that the center of the base of the prism is at the center of the 

prism table. Rotate the prism table so that the beam from the collimator falls on one of the refracting 

surfaces and emerges through the other (𝑓𝑖𝑔. 2). The spectral lines should be visible with the unaided 

eye. Locate the spectrum with the telescope. On emergence you will see slit images of different colors 

at different angles. The whole thing is called a spectrum. Select a particular line in the spectrum for 

observation and note its color and the corresponding wavelength (𝑔𝑖𝑣𝑒𝑛 𝑜𝑛 𝑡ℎ𝑒 𝑝𝑎𝑔𝑒 22) in your 

observation table. Lock the platform. If necessary, adjust the entrance slit width of the collimator to 

sharpen the spectrum so that it is as bright as possible. Now rotate the prism table slowly in steps and 

each time rotate the telescope to receive the selected line at the cross wire. The telescope should 

come closer to the direct path. If it goes away from the direct path, rotate the prism table in the 

opposite direction. You cannot bring the line closer to the direct path beyond a point. As you rotate 

the prism table in either direction at this stage, the image will move away from the direct path. This 

turning point is the position of minimum deviation for that particular wavelength. 

• If you lock the telescope in this position, disturb the prism table a little bit, and gradually rotate it to 

bring it back to the original position and continue in the same sense, the successive view that you will 

see in the telescope are like that shown in 𝐹𝑖𝑔. 6. 

• Determine this position very carefully by using the fine adjustment screws on the telescope. Record 

the reading at the vernier. Re-determine this position for the same line several times and take the 

average minimum deviation position 𝐷𝑖. 

• Repeat the same procedure for all the spectral lines that can be seen clearly. Record all observations 

carefully. 

 

• Remove the prism and rotate the telescope to bring it directly opposite 

to the collimator in a straight line.  Center the slit image in the crosswire 

and record this position using the vernier. You may take several readings 

to get an average value of this zero-point position 𝐷0. The angle of 

minimum deviation (𝐷𝑚𝑖𝑛) for the 𝑖𝑡ℎ  spectral line is |𝐷𝑖 − 𝐷0|. 

• Make necessary calculations for the refractive index 𝑛 and plot 

 (𝑖)  𝑛 𝑣𝑠 𝜆  and 

 (𝑖𝑖)  (𝑛 − 1) 𝑣𝑠 
1

𝜆2 

• Calculate the desired quantities. 

Slit Image 
Image just 

reaches center Image recedes 

Crosswire
s 

1 2 3 4 5 

𝑭𝒊𝒈. 𝟔 

𝑭𝒊𝒈. 𝟕 

𝑫 

𝒊 

𝑫
𝒎

𝒊𝒏
 

𝒊 = 𝒓 



 

 
 

 
Calculation of least count (𝒍. 𝒄) or vernier constant (𝒗. 𝒄): 

 

From the image of vernier scale (𝑓𝑖𝑔. 7.1) you can see that length of 30 𝑙𝑖𝑛𝑒𝑠 𝑜𝑓 𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑠𝑐𝑎𝑙𝑒 matches 

with the length of 29 𝑙𝑖𝑛𝑒𝑠 𝑜𝑓 𝑚𝑎𝑖𝑛 𝑠𝑐𝑎𝑙𝑒. 

∴ 30 𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 (𝑣. 𝑠. 𝑑)

= 29 𝑚𝑎𝑖𝑛 𝑠𝑐𝑎𝑙𝑒 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 (𝑚. 𝑠. 𝑑) 

⇒ 1 𝑣. 𝑠. 𝑑 = (
29

30
)  𝑚. 𝑠. 𝑑 

Now, 𝑉𝑒𝑟𝑛𝑖𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑣. 𝑐) = 1 𝑚. 𝑠. 𝑑 − 1 𝑣. 𝑠. 𝑑 

⇒ 𝑣. 𝑐 = 1 𝑚. 𝑠. 𝑑 − (
29

30
)  𝑚. 𝑠. 𝑑 

⇒ 𝑣. 𝑐 = (1 −
29

30
)  𝑚. 𝑠. 𝑑 = (

1

30
)  𝑚. 𝑠. 𝑑 = (

1

30
) × 30′ = 1′ 

So, 𝑙𝑒𝑎𝑠𝑡 𝑐𝑜𝑢𝑛𝑡 (𝑙. 𝑐) 𝑜𝑟 𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑣. 𝑐) = 1′ 

 
How to take reading: 

 

Vernier reading 0 is your reference point. First determine at what 

point vernier 0 cross the main scale reading. Then you will look 

for the verner reading and that is the reading where a particular 

line from vernier scale perfectly coincides with any of the main 

scale reading. Let's see an example. 

In 𝑓𝑖𝑔. 7.2, 𝑀. 𝑆. 𝑅 = 232° and 𝑉. 𝑆. 𝑅 = 20. 

∴ 𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 = 𝑀. 𝑆. 𝑅 + (𝑉. 𝑆. 𝑅 × 𝑉. 𝐶) 

⇒ 𝑅𝑒𝑎𝑑𝑖𝑛𝑔 = 232° + (20 × 1′) = 232°20′ 

 
Graph Plotting: 

 

From Cauchy’s equation, we have 

n = 1 + A(1 +
𝐵

𝜆2
) 

By rearranging the above equation, we get 

(𝑛 − 1) = 𝐴𝐵 (
1

𝜆2
) + 𝐴 

Now if we plot (𝑛 − 1) 𝑣𝑠 (1 𝜆2⁄ ) graph, it will be a straight line. By comparing the above form with the 

standard equation of straight line [𝑦 = 𝑚𝑥 + 𝑐], we can observe that 𝐴𝐵 is the slope of the straight line 

and 𝐴 is the 𝑦-𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡. 

𝑭𝒊𝒈. 𝟕. 𝟏 

𝑭𝒊𝒈. 𝟕. 𝟐 



 

 
Calculation of 𝑨, 𝑩 and 𝝎: 

 

Since we have started 𝑥-𝑎𝑥𝑖𝑠 from 0.025 × 10−6 (not from 0), so we will not have 𝑦-𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 at 𝑥 = 0 

point. To  calculate the 𝑦-𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (𝐴), we put the value of slope 𝑚 (calculated from the graph) and the 

centroid value [𝑥𝑐 = (
∑ (

1

𝜆𝑖
2)

6
𝑖=1

6
⁄ ) , 𝑦𝑐 = (

∑ (𝑛𝑖 − 1)6
𝑖=1

6
⁄ )] in the straight line equation 𝑦 = 𝑚𝑥 + 𝑐. 

By doing this, we get the value of 𝐴 as 

𝐴 = 𝑐 = 𝑦𝑐 − 𝑚𝑥𝑐 

Once we get the value of 𝐴, we can calculate 𝐵 from the relation 𝐴𝐵 = 𝑚 [⇒ 𝐵 = 𝑚
𝐴⁄ ]. 

To calculate 𝜔, put the calculated values of refractive indices in 𝑒𝑞. (4). 

 
 

 
Error in 𝒏: 

 

We will calculate the error of 𝑛 considering Snell's formula because we used it for calculating 𝑛 for 

different light colors. 

𝑛 =
sin (

𝐴+𝐷𝑚𝑖𝑛

2
)

sin (
𝐴

2
)

 

Taking 𝑙𝑜𝑔 in both sides and then differentiating, we get 

∆𝑛

𝑛
= cot (

𝐴 + 𝐷𝑚𝑖𝑛

2
) ∙ (

∆𝐴 + ∆𝐷𝑚𝑖𝑛

2
) + cot (

𝐴

2
) ∙ (

∆𝐴

2
) 

Since 𝐴 is given as known quantity, we can take its error ∆𝐴 = 0. So, the final expression becomes 

∆𝑛

𝑛
= cot (

𝐴 + 𝐷𝑚𝑖𝑛

2
) ∙ (

∆𝐷𝑚𝑖𝑛

2
) 

Here, ∆𝐷𝑚𝑖𝑛 is the difference between two readings. Which means we get two errors from two different 

readings. 

∴ ∆𝐷𝑚𝑖𝑛 = 2 × 𝑙𝑒𝑎𝑠𝑡 𝑐𝑜𝑢𝑛𝑡 = 2 × 1′ = (
2

60
) × (

𝜋

180
) 𝑟𝑎𝑑 =

𝜋

5400
𝑟𝑎𝑑 

Find the error in the refractive index for red color only i.e., 

∆𝑛𝑅 = [cot (
𝐴 + 𝐷𝑚𝑖𝑛

2
) ∙ (

∆𝐷𝑚𝑖𝑛

2
)] × 𝑛𝑅 

N.B. - Remember that for error in 𝜔, you also need to calculate ∆𝑛𝐵 and ∆𝑛𝑌. So if you are not running 

out of time and think that you can do all the calculation then find the error for them, if not then skip this 

part for the time being. 
 



 

 
Error in 𝑨: 

 

Since 𝐴 is the 𝑦-𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 of (𝑛 − 1) 𝑣𝑠 (1 𝜆2⁄ ) graph, the error of 𝐴 can be taken as the smallest division 

in 𝑦-𝑎𝑥𝑖𝑠. 

∆𝐴 = (𝑠. 𝑑)𝑦-𝑎𝑥𝑖𝑠 

 
Error in 𝑩: 

 

∆𝐵

𝐵
=

∆𝑚

𝑚
+

∆𝐴

𝐴
       where,   ∆𝑚 =

|𝑚 − 𝑚1| + |𝑚 − 𝑚2|

2√𝑛
 [𝑛 is the no. of data points] 

 
Error in 𝑩: 

 

∆𝜔

𝜔
=

∆𝑛𝐵 + ∆𝑛𝑅

𝑛𝐵 − 𝑛𝑅
+

∆𝑛𝑌

𝑛𝑌 − 1
 

 

 

Spectral lines of the mercury (Hg) source: 
You may look at Appendix 𝐶 for a spectrum of the 
mercury lamp provided to you. It is measured in our 
research laboratory using a computer-controlled 
system consisting of a grating monochromator, a 
photomultiplier tube and a photon counter. 

 
 

 

Red 627.3 nm Turquoise 493.9 nm 

Yellow 579.8 nm Blue 438.5 nm 

Green 547.7 nm Violet 405.1 nm 
 

 

 
 

 

1. On what factors do the angle of deviation depend when a beam of light passes 
through a prism? 

2. Why is it necessary to make the beam parallel by passing through the collimator? 
 

Reference: Fundamentals of Optics, Fourth edition, F.A. Jenkins and H.E. White, McGraw Hill 

 



 

 

Aim: 

Working Formulae: 

Observation/Table: 

Angle of Prism (𝐴) = 60° 

Least Count of vernier = 

Table I: Measurement of the Angle of Minimum Deviation - 

Sl. 
No 

𝝀 
in nm 

With Prism (𝑫) Without Prism (𝑫𝟎) Angle of 
Minimum 
Deviation 
(𝑫𝒎𝒊𝒏) 

M.S.R V.S.R Total M.S.R V.S.R Total 

1         

2         

3         

4         

5         

6         
 

Table II: Calculation of Refractive Index (𝑛) - 

Sl. 
No 

𝝀 
in nm 

𝟏

𝝀𝟐
 𝒏 =

𝐬𝐢𝐧 (
𝑨+𝑫

𝟐
)

𝐬𝐢𝐧 (
𝑨

𝟐
)

 (𝒏 − 𝟏) 

1     

2     

3     

4     

5     

6     

 

Graph: Plot (𝑛 − 1) 𝑣𝑠 1 𝜆2⁄  

Calculations: Calculate Cauchy’s 𝐴 𝑎𝑛𝑑 𝐵 coefficients from the Graph, and the dispersive power 𝜔. 

Error Analysis: Determine the error in 𝑛 (for one 𝜆) and Cauchy’s 𝐴 𝑎𝑛𝑑 𝐵 coefficients. 

Final Result: Write your final results in this format - 𝑅𝑒𝑠𝑢𝑙𝑡 ± 𝐸𝑟𝑟𝑜𝑟. [All units should be mentioned] 



 

 
 

 

Aim: 

 

• To determine the velocity of light in air. 

• To determine the velocity of light in a synthetic resin block. 

• To calculate the refractive index of synthetic resin. 

 

 
 

In 1849, Armand Hippolyte Louis Fizeau was the first to measure the velocity of light. He used a simple 

apparatus which included a rotating toothed wheel and a remote mirror shown below in 𝐹𝑖𝑔. 𝑎. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this apparatus (𝐹𝑖𝑔. 𝑎) a pulse of light with the help of a beam splitter passes through an opening at 

the bottom of the toothed wheel and strikes a slivered reflecting mirror. By adjusting the velocity of the 

rotating wheel, the returning pulse of light could be made to either pass through or be obstructed by the 

tooth on the wheel. Fizeau found the velocity of light to be 315300 km ∙ s−1. More precise experiments 

based on rotating mirror apparatus to measure the velocity of light were made by famous names like Jean 

Bernard Leon Focault (1850) and Albert Abraham Michelson (𝑏𝑒𝑡𝑤𝑒𝑒𝑛 1852 – 1931). These 

experiments reached a level of precision that the standard meter was defined based on the velocity of 

light measured (namely, the distance traversed by light in vacuum during the time interval of 

1/299792458 𝑜𝑓 𝑎 𝑠𝑒𝑐𝑜𝑛𝑑). With the advent of solid state lasers, a more accurate way to measure the 

velocity of light is based on measuring the phase difference between an incident and reflected path of 

light. 

𝑭𝒊𝒈. 𝒂 



 

Outline of the concept of phase difference between waves due to path 
difference 
We briefly describe the concept of the phase difference between two waves. Consider two 

monochromatic light sources, one emits a monochromatic wave 𝐴(𝑥, 𝑡) = 𝐴0 sin(𝑘𝑥 − 𝜔𝑡) and another 

source which is placed shifted to the left by a distance 𝑑 and placed below the first source (see the 

schematic shown in 𝐹𝑖𝑔. 𝑏). The second source emits a wave 𝐵(𝑥, 𝑡) = 𝐵0 sin[𝑘(𝑥 + 𝑑) − 𝜔𝑡], note the 

frequency (𝑓) is same for both the sources (𝜔 = 2𝜋𝑓).  

  

 

 

 

 

 

 

 

This distance 𝒅 is called path difference. We say: These two waves have the path difference of 𝒅. What is 

the phase difference between the two waves? See the illustration above (𝐹𝑖𝑔. 𝑏)representing the phase 

difference between the two waves with a path difference of 𝑑. One can note in 𝐹𝑖𝑔. 2, the difference in 

phases of the two waves arriving at the plane where the phases of the waves from sources 𝐴 and 𝐵 are 

measured. Quantitatively what is the phase difference between the two waves is related to the path 

difference by: 

Phase of wave 𝐴 is, φ𝐴 = 𝑘𝑥 − 𝜔𝑡 ........................ (1) 

Phase of wave 𝐵 is, φ𝐵 = 𝑘(𝑥 + 𝑑) − 𝜔𝑡 ........................ (2) 

∴ The phase difference is ∆𝜑 = φ𝐵 − φ𝐴 = 𝑘𝑑 ........................ (3) 

where, 𝑘 =
2𝜋

𝜆
=

𝜔

𝑐
 [𝑐 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑣𝑒 𝑎𝑛𝑑 𝜔 = 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 2𝜋𝑓] 

The experiment for measuring the velocity of light, involves the setting up of a controlled phase difference 

of either 0 or  between two light beams and measuring the velocity of light in air or in a medium based 

on this principle. Note if we have two waves say 𝑋 = 𝐴 sin𝜔𝑡 and 𝑌 = 𝐴 sin(𝜔𝑡 + ∆𝜑) and the phase 

difference ∆𝜑 between these two waves is 0, then 𝑋 = 𝑌 and if ∆𝜑 between the two waves is   then 

𝑋 = −𝑌. If we plot the 𝑋 wave on the 𝑥-𝑎𝑥𝑖𝑠 and the 𝑌 wave on the 𝑥-𝑎𝑥𝑖𝑠 of an 𝑥-𝑦 plot, then the 𝑥-𝑦 

plot of ∆𝜑 = 0 looks like 𝐹𝑖𝑔. 𝑐1 and  ∆𝜑 = 𝜋 looks like 𝐹𝑖𝑔. 𝑐2.  
 

 
 

If the phase shift ∆𝜑 between the waves 𝑋 and 𝑌 is arbitrary then in general one gets an ellipse if 𝑋 is 

plotted on the 𝑥-𝑎𝑥𝑖𝑠 and 𝑌 wave is plotted on the 𝑦-𝑎𝑥𝑖𝑠. (The above procedure of plotting one wave 

along the 𝑥-𝑎𝑥𝑖𝑠 and another along the 𝑦-𝑎𝑥𝑖𝑠 leads to Lissajous figure). 
 

∆𝜑 = 𝜋 
or 

𝑋 = 𝑌 

𝑭𝒊𝒈. 𝒄𝟏 

∆𝜑 = 𝜋 
or 

𝑋 = −𝑌 

𝑭𝒊𝒈. 𝒄𝟐 

Source A 

Source B 

𝒅 

Phase of 
Source B 

Phase of 
Source A 

𝑭𝒊𝒈. 𝒃 



 

 
 

The theory of operation is straight forward, illustrated in 𝐹𝑖𝑔. 𝑑. A high intensity, high frequency Light 

Emitting Diode (LED) is modulated at 50.1 MHz by a crystal – controlled oscillator. The transmitter in 

𝑓𝑖𝑔. 𝑑 shows emitted the light, which is the LED with modulations. The emitted light is received after 

travelling through some distance and being reflected back to the receiving diode (light sensor). The 

returning light will be phase shifted w.r.t to the emitted light due to the distance travelled. The modulation 

signal and the reflected signal (received at the receiver) are independently mixed with a 50.05 MHz signal, 

that results in two 50 kHz outputs (𝑋 𝑎𝑛𝑑 𝑌) that can be observed on the user’s two channel 

oscilloscope. Furthermore, the relative phase difference between the emitted and the reflected signals 

are preserved during the mixing process so that the phase difference can be measured. In practice the 

reflecting mirrors are set close to the source and the initial phase is adjusted to zero. The mirrors are then 

moved until an appropriate phase shift appears. The phase difference is determined by using a dual 

channel oscilloscope and using the Lissajous figures described above for getting phase difference of 

0 𝑎𝑛𝑑 . Note the mixing is done by a Frequency mixer (see circuit below), which is a electrical circuit that 

creates new frequencies from two signals applied to it. A typical example is, say two signals applied to the 

input of a mixer, 𝑉1 = 𝐶1 sin(2𝜋𝑓1𝑡) and 𝑉2 = 𝐶2 sin(2𝜋𝑓2𝑡), then the mixer takes the product of 𝑉1 and 

𝑉2, which will result in from simple trigonometry, 

𝐶1𝐶2

2
[
𝑜

0
cos {2𝜋(𝑓1 − 𝑓2)𝑡} − cos  {2𝜋(𝑓1 + 𝑓2)𝑡}

𝑜

0
] 

Thus, one of the outputs of the mixer is cos[2𝜋(𝑓1 − 𝑓2)𝑡], which is a 50 kHz signal as per the above 

specifications of 𝑓1 and 𝑓2 which is sent to the oscilloscope. The other component from the output of the 

mixer cos[2𝜋(𝑓1 + 𝑓2)𝑡], is unused in this present experiment.  
 

[𝑨𝒄𝒌𝒏𝒐𝒘𝒍𝒆𝒅𝒈𝒆𝒎𝒆𝒏𝒕: 𝑩𝒓𝒊𝒆𝒇 𝒊𝒏𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒓𝒆𝒈𝒂𝒓𝒅𝒊𝒏𝒈 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 𝒎𝒊𝒙𝒆𝒓𝒔 𝒈𝒂𝒕𝒉𝒆𝒓𝒆𝒅 𝒇𝒓𝒐𝒎 𝑾𝒊𝒌𝒊𝒑𝒆𝒅𝒊𝒂] 

 

50.1 MHz 

50.1 MHz 

Mixer 

Transmitter 

Receiver 

Crystal 
Oscillator 

50.05 MHz 

Mixer 

50 kHz 

50 kHz 

𝑿 

𝒀 

Phase 
adjust 

𝑓/1000 

Control Unit 
(CU) 

Inside 
CU 

On this side of control unit are 
the transmitter and receiver 
openings 

Close of CU in your experiment and what is inside it. 
𝑭𝒊𝒈. 𝒅 



 

 
 

(Follow the procedure outline below to perform the experiment. See the appendix for a short review on the 

Cathode Ray Oscilloscope (CRO) which you will use in this experiment) 
 

 
Setup and preparation: 

 

Set up and prepare the experiment according to the following instructions and pictures:  

→ The control unit is shown in 𝑓𝑖𝑔. 1 and already discussed above. The control unit is already placed in 

the proper position (left side of the base plate next to the scaling) as shown in the figure. 

 

𝑭𝒊𝒈. 𝟏 

→ Connect the operating unit to the oscilloscope with the two screened cable as shown in 𝐹𝑖𝑔. 2 and 3 

[connect the 𝑋- and 𝑌- outputs of the operating unit (𝐹𝑖𝑔. 2) to the respective channel I (CHI, which 

is 𝑋 signal) and Channel II (CH II which is the 𝑌 signal) inputs of the oscilloscope (𝐹𝑖𝑔. 3)] 

 
𝑭𝒊𝒈. 𝟐 

 
𝑭𝒊𝒈. 𝟑 

CH I CH II 

Phase rotary switch 

Base Plate 



 

→ Put the oscilloscope in the 𝑋-𝑌 mode by pressing the button of the 𝑋-𝑌 mode of the oscilloscope 

(𝐹𝑖𝑔. 4) (the button may already be pressed in for your setup). 

 

𝑭𝒊𝒈. 𝟒 

 

→ For the sensitivity of the Channel I (CH I) choose 200 mV/cm (on the oscilloscope it is labeled with 

". 2") and for the Channel II (CH II) set 20 mV/cm (𝐹𝑖𝑔. 5). 

 
𝑭𝒊𝒈. 𝟓 

 

 

 

 

Knob for setting 
Sensitivity of CH-II 

Knob for setting 
Sensitivity of CH-I 



 

→ The condenser lens should have a distance about 3.5– 4 cm from the transmitter diode of the 

operating unit (𝐹𝑖𝑔. 6). Make sure that the plane side of the lens points to the operating unit. 

→ Place the mirror onto the right end of the base plate (𝐹𝑖𝑔. 7). 

→ Switch on the operating unit and the oscilloscope. 

→ Use a white piece of paper to follow the emerging light beam and hold it in front of the mirror. 

→ Now, adjust the lens vertically, horizontally and in its height in such a way, that you can see a sharp 

image of the diode on the piece of paper (𝐹𝑖𝑔. 8). 

→ After removing the piece of paper, the red circle should illuminate the (left) mirror centrally. 

 
𝑭𝒊𝒈. 𝟔 

 

 
𝑭𝒊𝒈. 𝟕 

(𝑎𝑛 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑖𝑟𝑟𝑜𝑟) 

 
𝑭𝒊𝒈. 𝟖 

 
 

→ Place the second lens with the plane side pointing to the operating unit about 5 cm in front of the 

receiver diode (𝐹𝑖𝑔. 9). 

→ Move the lens sideways (𝐹𝑖𝑔. 10) until you see the image of the transmitter diode (little red circle) on 

the white ring around the receiver diode. 
 

 
𝑭𝒊𝒈. 𝟗 

 
𝑭𝒊𝒈. 𝟏𝟎 



 

→ Now move the lens in the direction of the light beam until the image on the white ring appears as a 

little disc, which diameter is a little smaller than the opening of the diode (𝐹𝑖𝑔. 11). 

→ Again, move the lens sideways and adjust it, so that the image of the transmitter diode hits the 

receiver diode in the best way. 

→ If you see the oscilloscope screen you will see an ellipse (𝐹𝑖𝑔. 12). 

 
𝑭𝒊𝒈. 𝟏𝟏 

 
𝑭𝒊𝒈. 𝟏𝟐 

 

 
Exp Part 𝐈 - Determination of the velocity of light in air 

 

→ Place the mirror near the operating unit, that the slit of the mirror’s base 

points to the zero point of the base plate’s scale (𝐹𝑖𝑔. 13). 

→ Change the sensitivity of the channel II (CH II) (see 𝐹𝑖𝑔. 3 above) to 

100 or 200 mV cm⁄  to see a Lissajous-figure (ellipse) on the oscilloscope 

(𝐹𝑖𝑔. 12). 

→ Turn the “Phase” rotary switch (𝐹𝑖𝑔. 1) of the operating unit to the right 

until you see a straight line (𝐹𝑖𝑔. 14). Note this position of the mirror as 𝑥1. 

→ Now, move the mirror away from the operating unit as long as you see a 

straight-line sloping into the opposite direction (𝐹𝑖𝑔. 15). Note this position of the mirror as 𝑥2. 

→ Measure the distance ∆𝑥 (= 𝑥2 − 𝑥1) that you had to move the mirror and note this value in 𝑡𝑎𝑏𝑙𝑒 1. 

→ Repeat this measurement a few times. 

 
𝑭𝒊𝒈. 𝟏𝟒 

 
𝑭𝒊𝒈. 𝟏𝟓 

𝑭𝒊𝒈. 𝟏𝟑 



 

 

 
Exp Part 𝐈𝐈 - Determination of the velocity of light in synthetic resin 

 

Place the synthetic resin block on the base plate on the reflected path of the light, namely, on the light 

beam path which is obtained after reflecting from the mirror and returning to the receiver (𝐹𝑖𝑔. 16). 
 

 
 

𝑭𝒊𝒈. 𝟏𝟔 
 

→ Place the mirror directly behind the resin block. 

→ Note this position of the mirror as 𝑥1
′ as in Part I of the experiment. 

→ On the display of the oscilloscope, there will appear a Lissajous-figure again. 

→ Use the “Phase” rotating switch of the operating unit again to display a straight line on the 
oscilloscope. 

→ Then take the resin block out of the light beam and move the mirror away from the operating unit 
until you see a straight-line sloping in the same direction again. 

→ Record the new position of the mirror as 𝑥2
′. 

→ Evaluate the distance ∆𝑥′ (= 𝑥2
′ − 𝑥1

′) that you had to move the mirror and note this value in 
𝑡𝑎𝑏𝑙𝑒 2. 

→ Repeat this measurement 7 - 10 times. 
 

Note 

Since this experiment requires no graph plotting, therefore take as many reading as possible. The 

data analysis should not only involve making proper estimates of the velocity of light in air and in 

the synthetic resin and the refractive index, but also making proper error estimates. Error estimation 

should involve calculating standard deviations as well as making error estimates using propagation 

of errors. 



 

 
 

 
Determination of the velocity of light in air: 

 

In order to determine the velocity of light in air with this experiment, we consider that the light beam, 

which emerges from the transmitter diode, hits the receiver diode after a measurable path. On hitting the 

receiver diode (photo diode), it causes an alternating voltage with the same frequency but with a phase 

shift to the initial signal. This phase difference is displayed with the help of the oscilloscope (appears as 

an ellipse). Therefore, the modulation frequency 𝑓 =  50.10 MHz of the transmitter diode is transformed 

within the operating unit to a frequency of about 50 kHz (𝐹𝑖𝑔. 17). 
 

 
𝑭𝒊𝒈. 𝟏𝟕 

 

When the oscilloscope displays a straight line with a positive slope, the phase difference is 0. In our 

experiment, this happens when the mirror is placed to the zero point of the base plate and you turn the 

“Phase” rotating switch to the right. Then, when you move the mirror away from the operating unit until 

you see a straight line with a negative slope on the oscilloscope, the phase difference is 180° (= 𝜋). The 

mirror displacement ∆𝑥 is measured and thus, the length of the path that the light beam has to cover until 

it reaches the receiver diode is ∆𝑙 = 2 ∙ ∆𝑥 

where, ∆𝑥 = 𝑥2 − 𝑥1 ........................ (1) 
 

(We have to multiply the measured mirror displacement with 2, since the light beam has to cover this 

distance on its way to the mirror and on its way back to the receiver diode.) 
 

To cover this path ∆𝑙 the light beam needs the time 

 ∆t =
1

2𝑓
 ........................ (2) 

where 𝑓 is the modulation frequency (50.10 MHz). 
 

 𝑐 =
∆𝑙

∆𝑡
=

2∆𝑥

(1 2𝑓⁄ )
= 4𝑓 ∙ ∆𝑥 ........................ (3) 

Use the mean value for ∆𝑥 from 𝑇𝑎𝑏𝑙𝑒 1 in the above formula to calculate the velocity of light in air. 



 

 
Determination of the velocity of light in synthetic resin and refractive index: 

 

In the following picture you can see a sketch of the experimental setup for this part of the 

experiment (𝐹𝑖𝑔. 18). 
 

In this part of the 

experiment, you obtain a 

straight line on the 

oscilloscope, which has the 

same slope at the mirror 

positions 𝑥1
′
 and 𝑥2

′. This 

means, that the phase 

difference is the same in 

both cases. Thus, the light 

covers the two different 

paths at the same time 𝑡1. 

The path that the light 

covered in the 

measurement with the 

medium is 𝑙1. Therefore, the 

path of the light in the 

measurement without the 

medium is 𝑙1 + 2 ∙ ∆𝑥′. 
 

where, 
 

∆𝑥′ = 𝑥2
′ − 𝑥1

′ 
 
 

For the two measurements, 

one gets the following 

equations for the time t1 - 

(Measurement with medium) t1 =
𝑙1
𝑐

−
𝑙𝑚
𝑐

+
𝑙𝑚
𝑣

 ........................ (4) 

(Measurement without medium) t1 =
𝑙1
𝑐

+
2∆𝑥′

𝑣
 ........................ (5) 

 

where 𝒍𝒎 is the length of the light path through the medium, 𝒄 be the velocity of light in air and 𝒗 be the 

velocity of light in the medium. 
 

From the equations (5) and (6) we get, 

 
𝑐

𝑣
=

2∆𝑥′

𝑙𝑚
+ 1 ........................ (6) 

 ⇒ 𝑣 =
𝑐 ∙ 𝑙𝑚

2∆𝑥′ + 𝑙𝑚
 ........................ (7) 

 

Insert your respective mean values for ∆𝑥′ from 𝑇𝑎𝑏𝑙𝑒 2 and your result for the velocity of light in air 𝑐 in 

𝑒𝑞. (7) to calculate the velocity of light in synthetic resin. 
 

Then calculate the refractive index of the medium 𝑛 = 𝑐
𝑣⁄  using 𝑒𝑞. (6). 

𝑭𝒊𝒈. 𝟏𝟖 



 

 

Aim: 

Working Formulae: 

𝑐 = 4𝑓 ∙ ∆𝑥 𝑣 =
𝑐 ∙ 𝑙𝑚

2∆𝑥′ + 𝑙𝑚
 𝑛 =

𝑐

𝑣
=

2∆𝑥′

𝑙𝑚
+ 1 

 

where, 𝑐 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛 𝑎𝑖𝑟 

𝑓 = 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (50.10 MHz) 

∆𝑥 = 𝑚𝑖𝑟𝑟𝑜𝑟 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (𝑎𝑠 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑 𝑖𝑛 𝐸𝑥𝑝 𝑝𝑎𝑟𝑡 𝐼) 

𝑙𝑚 = 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑔ℎ𝑡 𝑝𝑎𝑡ℎ 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑚𝑒𝑑𝑖𝑢𝑚 

∆𝑥′ = 𝑚𝑖𝑟𝑟𝑜𝑟 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (𝑎𝑠 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑 𝑖𝑛 𝐸𝑥𝑝 𝑝𝑎𝑟𝑡 𝐼𝐼) 
 

Observation/Table: 

Length of resin block 𝑙𝑚 = ____________ cm = ____________ m 

Least Count of the base table = ____________ cm = ____________ m 

Table I: Determination of the velocity of light in air (Take at least 7 readings) 

Sl. 
No. 

Initial position 
(𝑥1) 

Final position 
(𝑥2) 

Mirror displacement  
∆𝑥 = 𝑥2 − 𝑥1 

1    
2    
3    
4    
5    
6    
7    

 

∆𝑥𝑎𝑣𝑔 = ____________ cm =  ____________ m 
 

Table II: Determination of the velocity of light in synthetic resin (Take at least 7 readings) 

Sl. 
No. 

Initial position 
(𝑥1

′) 
Final position 

(𝑥2
′)  

Mirror displacement  
∆𝑥′ = 𝑥2

′ − 𝑥1
′ 

1    
2    
3    
4    
5    
6    
7    

 

∆𝑥′
𝑎𝑣𝑔 = ____________ cm =  ____________ m 



 

Calculations:  

 1. Calculate the velocity of light in air (𝑐). 

 2. Calculate the velocity of light in the given medium (𝑣). 

 3. Calculate refractive index (𝑛) of the given medium. 

Error Analysis:  

 1. Calculate standard deviation (S.D.) in ∆𝑥 and ∆𝑥′. 

 2. Determine the errors in 𝑐, 𝑣 and 𝑛. 

Final Result: Write your final results in this format - 𝑅𝑒𝑠𝑢𝑙𝑡 ± 𝐸𝑟𝑟𝑜𝑟. [All units should be mentioned] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

Aim: 

 

• To measure the magnetic field 𝐵 along the axis of the flat coils when the distance between 

these two coils (𝑆) is equals to the radius of a coil (𝑅). 

• To obtain the 𝐵 components for each coil separately in this configuration. (𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙) 

• To determine 𝑒/𝑚 ratio of electron using Narrow beam electron tube. 

 

 
 

 
Magnetic Field in Helmholtz Coil: 

 

The magnetic field of a circular coil of radius 𝑅, carrying a current 𝐼, at a distance 𝑧 from the center of the 

loop along the axis is given by 

𝐵⃗ =
𝜇0𝐼

2
∙

𝑅2

(𝑅2 + 𝑧2)
3

2⁄
𝑘̂ 

 

If there are two such parallel coils at a distance s in a such a way that the magnetic field adds in the space 

between them, then the magnetic field in between the coils is given by 
 

𝐵 =
𝜇0𝐼𝑅

2

2

[
 
 
 
 

1

{𝑅2 + (
𝑆

2
+ 𝑧)

2

}

3
2⁄
+

1

{𝑅2 + (
𝑆

2
− 𝑧)

2

}

3
2⁄

]
 
 
 
 

 

 

Using this formula, we can show that 
 

(𝑖) 𝐴𝑡 𝑡ℎ𝑒 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 
𝜕𝐵

𝜕𝑧
 𝑖𝑠 𝑧𝑒𝑟𝑜. 

(𝑖𝑖) 
𝜕2𝐵

𝜕𝑧2
 𝑖𝑠 𝑧𝑒𝑟𝑜 𝑖𝑓 𝑆 = 𝑅. 

 

Because of these properties, the axial magnetic field is fairly constant over a certain region in the middle 

of the pair of coils. This arrangement is very popular in producing uniform axial fields in regions easily 

accessible to experimental situations needing such uniformity. 
 

In this experiment we will investigate the magnetic field variations in space in such a pair of Helmholtz 

coils. The magnetic field is measured using a Hall probe connected to the Teslameter. 
 

 

Related Concepts: Magnetic Field due to current carrying Coils, Motion of an electron in 

crossed 𝐸 and 𝐵 Fields. 

References: Introduction to Electrodynamics by D.J. Griffiths, 2𝑛𝑑 Ed. 𝐶ℎ. 5. 

 



 

 
Specific Charge (𝒆 𝒎⁄ ) of electron: 

 

Electrons moving in a magnetic field are acted upon by a force normal to the field direction and normal 

to the direction of movement. The magnitude of the force is proportional to the charge 𝑒 and the velocity 

𝑣 of the electrons as well as the magnetic flux density 𝐵. In this experiment we use a "narrow beam tube" 

which consists of a glass chamber containing Argon gas at low pressure and in which an electron beam 

can be generated from an electron gun. The path of beam becomes visible when appropriate potentials 

are applied. If the narrow beam tube is arranged in the magnetic field of the Helmholtz coils so that the 

beam leaves the electron gun normal to the field direction, the force 𝐹 acting on the electrons is given by 
 

𝐹 = 𝑒𝑣𝐵 
 

Under the influence of this force the beam is deformed into an arc of a circle and bent into a complete 

circle of radius 𝑟 when the magnetic field is sufficiently strong. Using equation of motion and conservation 

of energy, it can be shown that 
 

𝑒

𝑚
=

2𝑉

𝑟2𝐵2
 

 

 where, 𝑉 is the accelerating voltage which gives a kinetic energy 𝑒𝑉 to each electron. 
 

Since all of the quantities on the right-hand side of the equation can be determined by measurement, it 

is possible to calculate the specific charge of the electron. 
 

 
 

 
Construction of Helmholtz Coil: 

 

The two coils given to you are wound from copper 

wire in 14 layers, each of 11 turns, giving the 

number of turns 𝑛 = 154. The sockets of the coil 

winding are cast into the plastic foot of the coil and 

the connecting leads can be used to connect the 

coils in parallel or series as required. 
 

                        In the Helmholtz arrangement, the coils are positioned by three spacer rails so that their 

axial spacing is equal to the average coil radius. The rails can be removed after undoing knurled screws, 

allowing coils to be used individually or with variable spacing. 
 

 
Principle of Teslameter: 

 

The Teslameter uses a Hall Probe as a sensor to measure the magnetic field. The Hall probe is made of a 

semiconductor and operates on the principle of Hall's effect, which can be briefly described as follows. A 

semiconductor carrying current develops an 𝑒.𝑚. 𝑓., when placed in a magnetic field, in a direction 

perpendicular to the direction of both electric current and magnetic field. The magnitude of this 𝑒.𝑚. 𝑓. 

is proportional to the field intensity if the current is kept constant. This 𝑒.𝑚. 𝑓. is called Hall voltage. This 

small Hall voltage is amplified so that a millivoltmeter connected at the output of the amplifier can be 

calibrated directly in magnetic field units. 
 

 𝑇ℎ𝑒 𝐶𝑜𝑖𝑙 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 400 mm 

𝑁𝑜 𝑜𝑓 𝑡𝑢𝑟𝑛𝑠 𝑝𝑒𝑟 𝐶𝑜𝑖𝑙𝑠 154 

𝐶𝑜𝑖𝑙 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 2.1 Ω 



 

 
 

➢ Familiarize yourself with the coil (its construction and terminals), the Hall probe and the Teslameter 

provided to you. 

➢ Connect the coils with the power supply in such a way that both coils have the same current in proper 

direction. Think carefully before you do this. In no case the current should exceed 𝟑 𝐀. 
 

 
Operating Instructions for Teslameter: 

 

→ Turn the stepping switch (3) to left most 
position to select the measuring range 
0 − 20 mT. 

→ Keep the changeover switch (4) in the 
“Direct Field” measurement mode (the 
lower position). 

→ Switch on the Teslameter 10 min before 
starting to take measurements. 

→ With no current in the Helmholtz coil, the 
Teslameter should show zero reading. If 
not, then using the zero-adjustment knob 
(2 𝑎𝑛𝑑 6), set the reading to zero in the 
following manner - First turn the fine 
adjustment knob (6) to the middle “0” 
position. The display value is then minimized by turning the course zero-adjustment screw (2). Fine 
zeroing is then done with the fine adjustment knob (6). 

→ Insert the Hall Probe into the magnetic field to be measured. The flat part of the probe should be 
perpendicular to the field. 

→ Note down the readings. (The reading displayed is directly in milli-Tesla). 

Precaution: The Hall probe is very delicate and should be handled with extreme care. If you have any 

doubts with respect to handling the Teslameter and Hall Probe, then please contact your TA/Tutor. 
 

The student may take the characteristic of magnetic field at the midpoint of the two coils and choose a 

current from that curve to be used in the entire experiment. 
 

 
Exp Part 𝐈 – Measuring Magnetic Field 𝑩 of Helmholtz Coil: 

 

(a) Adjust the spacing between the coils to 𝑆 = 𝑅. Measure 𝐵(𝑧) as a function of distance from the 

midpoint along the axis taking measurements for every 10 millimeters when currents in the coils are 

in the same sense. Make sure that the Hall probe flat surface is parallel to the plane of the coil. 
 

(b) Similarly obtain contributions of each coil separately and plot all the three cases in the same graph 

paper.[𝑶𝒑𝒕𝒊𝒐𝒏𝒂𝒍 𝒑𝒂𝒓𝒕] 

 

5 

1 

2 

3 4 

7 

6 



 

 

𝑩 𝒗𝒔 𝒛 graph 
→ Calculate each value of |𝐵⃗ | corresponding to each 𝑧 keeping the current fixed at 
the experimental value and draw an analytical plot from the given formula. 
→ On the same graph you will draw the experimental 𝐵 𝑣𝑠 𝑧 plot and compare with 
the analytical plot. 

 

 
Exp Part 𝐈𝐈 – Determining specific charge of electron using narrow beam tube: 

 

Before the tube is turned on it must be ensured that the two 

potentiometers 0 − 50 V and 0 − 300 V of the mains 

adapter are on zero. This avoids voltage being present at the 

grid or anode of the electron gun when the filament voltage 

is switched on. This makes absolutely sure that the cathode 

layer cannot be damaged during heating. Only after a heating 

time of about one minute are the two potentiometers turned 

up so that the presence of the narrow beam can be observed 

in a well darkened room. The level of the anode voltage is 

chosen with the 0 − 300 V potentiometer, whereas with the 

aid of the 0 − 50 V potentiometer the grid voltage and hence 

the focus and brightness of the narrow beam can be suitably 

adjusted. The full intensity of the narrow beam is not 

generally achieved until heating has been continued for 2 to 

3 minutes. 
 

When measurement is interrupted for quite some time it is 

advisable to turn the two potentiometers back to zero. This 

considerably extends the life of the narrow-beam tube. 
 

 

(𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑜𝑓 𝑡𝑢𝑏𝑒) 



 

The following experimental procedure can be adopted to determine the specific charge of an electron: 
 

1. After the heating period the narrow beam is adjusted appropriately and a certain acceleration 

voltage 𝑉 selected. 

2. The current through the Helmholtz coils is then switched on and the circuit path described by the 

narrow beam under the influence of the homogeneous magnetic field observed (maximum 

permissible continuous current 3 A). 

3. The narrow-beam tube is turned in its clips to ensure that the beam leaves the electron gun exactly 

normal to the direction of the magnetic field and describes a full circle when the strength of the 

magnetic field is sufficient. 

4. The coil current is set so that the narrow beam impinges on one of the four measuring rings. A full 

circle with radii of 2 ,3, 4, 5 cm can be set up in this manner. 

5. The coil current 𝐼 required to produce a full circle of radius 𝑟 at the accelerating voltage 𝑉 indicated 

by the voltmeter is now read off the ammeter and the specific charge 𝑒/𝑚 of the electron 

calculated. Obtain the accuracy with which the specific charge 𝑒/𝑚 of an electron is determined 

in your apparatus. 
 

 
 

 

1. What is the principle of operation for magnetic field probe used in your 
experiment? 

2. List all precautions in doing this experiment? 

3. What are advantages, if any, of using Helmholtz arrangement to obtain 
uniform field over that of a solenoid? 

4. To what accuracy e/m ratio is known in the literature? 

5. Name a few other experiments from which we can determine e/m ratio. 
 

 

You may also do the following: 
To measure the axial and radial components of magnetic flux density when 
distance between coils 𝑆 = 𝑅 using the rotational symmetry of the set-up. 

i. axial 𝐵(𝑍) at 𝑟 = 100 mm, 𝑟 = 140 mm 
ii. radial 𝐵𝑟(𝑍) at 𝑟 = 100 mm, 𝑟 = 140 mm 

 

 
 

 

 

 

Reference: Introduction to Electrodynamics by D.J. Griffiths, 2𝑛𝑑  Ed. 𝐶ℎ. 5. 

 



 

 

Aim: 

Working Formulae: 

Observation/Table: 

Least count of Teslameter =  

Reference Point =  

Radius of coil = 

No. of turns = 

Least count of Potentiometer = 

[Before taking readings check with Hall probe that the magnetic field at center of the coils is non-zero 

(which confirms that you have done right connections)] 
 

Table I: Measurement of magnetic field ‘𝐵’ due to both the coils (in between and outside) when the 

current (𝒎𝒂𝒙 𝟏. 𝟓 𝐀) in both the coils flows in the same direction. 
 

In between coils Outside coils (left side) Outside coils (right side) 

Sl. 
No. 

Distance 
(measured 

w.r.t 
reference 

point) 

Magnetic 
Field 
(𝑩)  

Sl. 
No. 

Distance 
(measured 

w.r.t 
reference 

point) 

Magnetic 
Field 
(𝑩)  

Sl. 
No. 

Distance 
(measured 

w.r.t reference 
point) 

Magnetic 
Field 
(𝑩)  

1   1   1   

2   2   2   

3   3   3   

4   4   4   

5   5   5   

6   6   6   

7   7   7   

8   8   8   

9   9   9   

10   10   10   

 

𝐴𝑣𝑔 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 𝑖𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑜𝑖𝑙𝑠 𝐵𝑎𝑣𝑔 = ____________ mT 



 

Table II: Determination of 𝒆/𝒎 ratio for electron 
 

Sl. 
No. 

Radius (𝑟) 
in cm 

Voltage (𝑉1) 
in volt 

Voltage (𝑉2) 
in volt 

Sq. of Radius (𝑟2) 
in cm2 

Potential Diff (𝑉) 
(𝑉2 − 𝑉1) in volt 

1      

2      

3      

4      

5      

 

Graph:  

1. Plot 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑣𝑠 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑(𝐵) from 𝑇𝑎𝑏𝑙𝑒 𝐼. 

2. Plot 𝑉 𝑣𝑠 𝑟2 from 𝑇𝑎𝑏𝑙𝑒 𝐼𝐼. 

Calculations:  

1. Calculate slope (𝑚𝑠) of 𝑉 𝑣𝑠 𝑟2 graph. 

2. Calculate 𝑒/𝑚 ratio of the electron from the following formula - 

𝑒

𝑚
=

2𝑉

𝑟2𝐵2
=

2𝑚𝑠

𝐵𝑚𝑒𝑎𝑛
2 

Error Analysis:  

1. Calculate standard deviation (S.D.) of magnetic field in the constant region (between the 

coils). 

𝜎𝐵 = √
∑ (𝐵𝑖 − 𝐵𝑚𝑒𝑎𝑛)2𝑛

𝑖=0

𝑛 − 1
 

2. Determine the errors in 𝑚𝑠 and (𝑒 𝑚⁄ ). 

 

∆ (
𝑒

𝑚
) = [

∆𝑚𝑠

𝑚𝑠
+

2∆𝐵

𝐵𝑚𝑒𝑎𝑛
] ∙ (

𝑒

𝑚
)                   ∆𝑚 =

∆𝑚1 + ∆𝑚2

2√𝑁
 

 

Final Result: Write your final results in this format - 𝑅𝑒𝑠𝑢𝑙𝑡 ± 𝐸𝑟𝑟𝑜𝑟. [All units should be mentioned] 

1. Magnetic Field 𝐵 = 

2. Specific charge of electron (𝑒 𝑚⁄ ) = 

 

 

 

 

 

 



 

 
 

 

Aim: 

 

• To determine normal mode frequencies of coupled pendulum. 

• To establish a relation between characteristic frequencies and coupling lengths. 

• To calculate the spring constant 𝑘. 

• To see the comparison between 𝜔𝑠𝑝𝑟𝑖𝑛𝑔 and 𝜔0. 

 

 
 

 In a periodic system, the number of vibration frequencies is generally equal to the number of 

degrees of freedom, which in turn is the minimum number of co-ordinates needed to completely describe 

its motion. For example, a single pendulum that is constrained to pivot in one plane can have its position 

specified by a single coordinate (usually angular displacement from the vertical) and has only one natural 

frequency of vibration. A spring that can pivot around its attachment point has at least two degrees of 

freedom and therefore two vibration frequencies. The most interesting (and useful) examples of this type 

are systems with several oscillators that are somehow coupled together. In this experiment, you will study 

a system that has two gravity pendula coupled together by a spring. 
 

 
 

 You should be able to work out the theory behind the experiment either from energy 

considerations or from force-torque considerations. We outline it briefly using the former though it is 

equally easy by both methods. 

𝑭𝒊𝒈. 𝟏 − 𝑆𝑐ℎ𝑒𝑚𝑎𝑡𝑖𝑐 𝑜𝑓 𝑐𝑜𝑢𝑝𝑙𝑒𝑑 𝑝𝑒𝑛𝑑𝑢𝑙𝑎 𝑤𝑖𝑡ℎ 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑠𝑝𝑟𝑖𝑛𝑔 𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑. 



 

Given two pendula with the same mass ‘𝑚’ and length ‘𝐿’ attached with a spring.  When the pendula are 

displaced by angles 𝜃1 and 𝜃2, the masses are at positions (𝐿 sin 𝜃1 , −𝐿 cos 𝜃1) and (𝑑 +

𝐿 sin 𝜃2 , −𝐿 cos 𝜃2), where ‘d’ is the horizontal distance between the pendula attachment points. Let ′𝑙′ 

be the coupling length of the pendula (i.e. the distance of the point, where spring is attached to the 

pendula, from the point of suspension). Assuming 𝜃1 ≪ 1 or by ignoring vertical motion of the masses so 

that the amount by which the spring is stretched is given by 

 ∆𝑥 = 𝑙(sin 𝜃2 − sin 𝜃1) ≈ 𝑙(𝜃2 − 𝜃1) ................... (1) 
 

Combining the potential energy of the two masses with that of the springs gives: 
 

 𝑈 = 𝑚gℎ1 + 𝑚gℎ2 +
1

2
𝑘(∆𝑥)2  

 ⇒ 𝑈 = −𝑚g𝐿(cos 𝜃1 + cos 𝜃2) +
1

2
𝑘𝑙2(𝜃2 − 𝜃1)

2 ................... (2) 

 ⇒ 𝑈̇ = −𝑚g𝐿(sin 𝜃1 𝜃̇1 + sin 𝜃2 𝜃2̇) + 𝑘𝑙2(𝜃2 − 𝜃1)(𝜃̇2 − 𝜃̇1) ................... (3) 

 

Using the small angle approximation again in 𝑒𝑞. (3), we get 
 

 ⇒ 𝑈̇ = −𝑚g𝐿(𝜃1𝜃̇1 + 𝜃2𝜃2̇) + 𝑘𝑙2(𝜃2 − 𝜃1)(𝜃̇2 − 𝜃̇1) ................... (4) 
 

The kinetic energy of the masses is 
 

 𝐾 =
1

2
𝑚𝐿2 (𝜃̇1

2
+ 𝜃̇2

2
) ................... (5) 

 ⇒ 𝐾̇ = 𝑚𝐿2(𝜃̇1𝜃̈1 + 𝜃̇2𝜃̈2) ................... (6) 

 

Conservation of energy 𝐸̇ ≡ 𝑈̇ + 𝐾̇ = 0 then gives 
 

𝐸̇ = 𝜃̇1[𝑚𝐿2𝜃̈1 + 𝑚g𝐿𝜃1 − 𝑘𝑙2(𝜃2 − 𝜃1)] + 𝜃̇2[𝑚𝐿2𝜃̈2 + 𝑚g𝐿𝜃2 + 𝑘𝑙2(𝜃2 − 𝜃1)] ................... (7) 

 

Separating this equation gives 
 

 𝑚𝐿2𝜃̈1 = 𝜃1(−𝑚g𝐿 − 𝑘𝑙2) + 𝜃2(𝑘𝑙2) ................... (8) 

 𝑚𝐿2𝜃̈2 = 𝜃1(𝑘𝑙2) + 𝜃2(−𝑚g𝐿 − 𝑘𝑙2) ................... (9) 

 

Solving for 𝜃̈1 gives 
 

 𝜃̈1 = −𝜃1 (
g

𝐿
+

𝑘𝑙2

𝑚𝐿2
) + 𝜃2 (

𝑘𝑙2

𝑚𝐿2
) ................. (10) 

 

Similarly, 
 

 𝜃̈2 = 𝜃1 (
𝑘𝑙2

𝑚𝐿2
) − 𝜃2 (

g

𝐿
+

𝑘𝑙2

𝑚𝐿2
) ................. (11) 

 

Now, 

𝜔0
2 =

g

𝐿
  𝑎𝑛𝑑  𝜔𝑐

2 =
𝑘

𝑚
(
𝑙

𝐿
)
2

 



 

Using these, the two equations of motion [𝑒𝑞. (10)& (11)] reduce to 
 

 𝜃̈1 = −(𝜔0
2 + 𝜔𝑐

2)𝜃1 + 𝜔𝑐
2𝜃2 ................. (12) 

 𝜃̈2 = 𝜔𝑐
2𝜃1 − (𝜔0

2 + 𝜔𝑐
2)𝜃2 ................. (13) 

 

Adding and subtracting the above two differential equations, we get two normal mode equations 
 

(𝜃̈1 + 𝜃̈2) = −𝜔0
2(𝜃1 + 𝜃2) 

 

(𝜃̈1 − 𝜃̈2) = −(𝜔0
2 + 2𝜔𝑐

2)(𝜃1 − 𝜃2) 
 

having normal-mode frequencies 
 

𝜔𝐼 = 𝜔0  𝑎𝑛𝑑  𝜔𝐼𝐼 = √𝜔0
2 + 2𝜔𝑐

2 
 

Special Cases (To obtain normal mode frequencies) -  
(𝐼𝑛 𝑎𝑙𝑙 𝑐𝑎𝑠𝑒𝑠 𝑡ℎ𝑒 𝑝𝑒𝑛𝑑𝑢𝑙𝑎 𝑎𝑟𝑒 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑡) 

 

(in phase) 

Initial angular 
displacement 𝜃1 = 𝜃2 = 𝜃0 

Angular displacement 
of each pendulum as 
function of time 

𝜃1(𝑡) = 𝜃2(𝑡) = 𝜃0 cos𝜔0𝑡 

⇒ 𝜃1(𝑡) = 𝜃2(𝑡) = 𝜃0 cos𝜔𝐼𝑡       

  

(out of phase) 

Initial angular 
displacement 𝜃1 = −𝜃2 = 𝜃0 

Angular displacement 
of each pendulum as 
function of time 

𝜃1(𝑡) = 𝜃0 cos√𝜔0
2 + 2𝜔𝑐

2𝑡 = 𝜃0 cos𝜔𝐼𝐼𝑡 

𝜃2(𝑡) = −𝜃0 cos√𝜔0
2 + 2𝜔𝑐

2𝑡 = −𝜃0 cos𝜔𝐼𝐼𝑡 
  

(beat case) 

Initial angular 
displacement 𝜃1 = 𝜃0,  𝜃2 = 0 
 

Angular displacement 
of each pendulum as 
function of time 

𝜃1(𝑡) = 𝜃0 cos𝜔𝐵𝑡 × cos𝜔𝐼𝐼𝐼𝑡 

𝜃2(𝑡) = −𝜃0 sin𝜔𝐵𝑡 × sin𝜔𝐼𝐼𝐼𝑡 

where, the beat frequency 𝜔𝐵 and the oscillation frequency 𝜔𝐼𝐼𝐼 are given by 

𝜔𝐵 = (
√𝜔0

2 + 2𝜔𝑐
2 − 𝜔0

2
) , 𝜔𝐼𝐼𝐼 = (

√𝜔0
2 + 2𝜔𝑐

2 + 𝜔0

2
) 

 



 

 
 

        The experimental set up consists 

of two gravity pendula mounted on a 

rigid platform. The angular position of 

one of them can be recorded using 

rotary potentiometer. The voltage 

drop across the variable slider on the 

potentiometer is proportional to the 

angle by which the pendulum is 

displaced. The computer interface 

helps you record this voltage variation 

as a function of time and displays it on 

the screen. The masses must be 

placed symmetrically about the strip 

for each pendulum. 

        The instructor in charge of this 

experiment will show you how this 

data is obtained and how to read 

values of particular points of interest 

from the display. Do not change any 

settings or electrical connections 

without express permission of the 

instructor. However, you can choose 

software parameters according to 

your needs.  

 

 
 

 
For Single uncoupled Pendulum: 

 

• Find the time period 𝑇0 of a single pendulum without any coupling from a record of displacement as 

a function of time.  

• Average over several oscillations and do this many times. Familiarize yourself with the data acquisition 

process at this stage. 

 

 
For Asymmetric mode: 

 

• Make sure that the pendulum is always oscillating in the vertical plane as much as possible. Force the 

pendulum to the required amplitude by using your fingertip at about one third of the length from the 

suspension. 



 

• Attach the coupling spring at the holes closest to the bob. Displace both pendula by the same amount 

in the same direction (this needs care) to obtain initial conditions corresponding to asymmetric 

stretch. The effect of coupling spring would be seen to be negligible. Though you would notice 

damping as in the case of single pendulum. 

• Obtain the time period 𝑇𝐼 for this oscillation from several measurements. This is one of the two normal 

modes. 
 

 
For Symmetric mode: 

 

• Now create initial conditions for symmetric stretch by displacing the pendula equal amounts in 

opposite direction (out of phase). 

• Record enough data points to obtain the time period 𝑇𝐼𝐼 and the frequency of oscillations. 
 

 
For Beat Case: 

 

• Repeat previous step, with the initial conditions such that only one of them is displaced (beat case). 

For the beat case, measure the oscillation time period 𝑇𝐼𝐼𝐼 and the beat semi time period 
𝑇𝑏𝑒𝑎𝑡

2⁄  

corresponding to the envelope oscillation (time interval between 𝑛𝑡ℎ  and (𝑛 + 1)𝑡ℎ envelope 

minimum or maximum). 

• Repeat the beat case at least for 5 coupling lengths (𝑙). Measure 𝑇𝐼𝐼𝐼 and 
𝑇𝑏𝑒𝑎𝑡

2⁄  in each case. 

 

The screen displays of displacement as a function of time must be qualitatively sketched in your report 

for each case. 

 

Caution:  When we making small oscillations, we need to use first order type lever (like any uniform 

solid or pen for making small oscillation). 
 

 
 

 

1. Give at least two real life examples of coupled oscillators. 

2. How close is your pendulum to a simple pendulum? What differences you expect in 
characteristics from a simple pendulum and why? 

3. What other dominant modes of vibration, other than the modes you have tried 
to measure, are present in the system. Suggest ways of reducing their effect. 

4. How can the system you are using for this experiment be improved? 
 
 



 

 

Aim: 

Working Formulae: 

𝜔 =
2𝜋

𝑇
 

[𝜔 → 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛] 

[𝑇 → 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛] 

𝜔0
2 =

g

𝐿
    ;     𝜔𝑠𝑝𝑟𝑖𝑛𝑔

2 =
𝑘

𝑚
 

[𝜔0 → 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦] 

[𝜔𝑠𝑝𝑟𝑖𝑛𝑔 → 𝑠𝑝𝑟𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦] 

𝜔𝑐
2 =

𝑘

𝑚
(
𝑙

𝐿
)
2

 [𝜔𝑐 → 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦] 

𝜔𝐵 = (
√𝜔0

2 + 2𝜔𝑐
2 − 𝜔0

2
) [𝜔𝐵 → 𝑏𝑒𝑎𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦] 

𝜔𝐼𝐼𝐼 = (
√𝜔0

2 + 2𝜔𝑐
2 + 𝜔0

2
) [𝜔𝐼𝐼𝐼 → 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦] 

where, 

𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 𝑙 = 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠 

𝑘 = 𝑠𝑝𝑟𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑚 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠
 

Observation/Table: 

Least count of computer timer =                                    Least count of measurement scale = 

Table I: Table for natural frequency (Take at least 3 readings) 

Sl. 
No. 

No. of 
oscillations (𝑁) 

Initial Time 
(𝑇𝑖) 𝑖𝑛 ms 

Final Time 

(𝑇𝑓) 𝑖𝑛 ms 
∆𝑇 = 𝑇𝑓 − 𝑇𝑖 

𝑖𝑛 ms 

Time Period 

𝑇0 =
∆𝑇

𝑁
 𝑖𝑛 ms 

1      
2      
3      

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑 𝑻𝒂𝒗𝒈 = ____________ ms    𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝝎𝟎 = ____________ rad/sec 
 

Table II: Table for Asymmetric Stretch (Take at least 3 readings) 

𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ = ____________ cm 

Sl. 
No. 

No. of 
oscillations (𝑁) 

Initial Time 
(𝑇𝑖) 𝑖𝑛 ms 

Final Time 

(𝑇𝑓) 𝑖𝑛 ms 
∆𝑇 = 𝑇𝑓 − 𝑇𝑖 

𝑖𝑛 ms 

Time Period 

𝑇𝐼 =
∆𝑇

𝑁
 𝑖𝑛 ms 

1      
2      
3      

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑 𝑻𝑰𝒂𝒗𝒈
= ____________ ms    𝑁𝑜𝑟𝑚𝑎𝑙-𝑚𝑜𝑑𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝝎𝑰 = ____________ rad/sec 



 

Table III: Table for Symmetric Stretch (Take at least 3 readings) 

𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ = ____________ cm 

Sl. 
No. 

No. of 
oscillations (𝑁) 

Initial Time 
(𝑇𝑖) 𝑖𝑛 ms 

Final Time 

(𝑇𝑓) 𝑖𝑛 ms 
∆𝑇 = 𝑇𝑓 − 𝑇𝑖 

𝑖𝑛 ms 

Time Period 

𝑇𝐼𝐼 =
∆𝑇

𝑁
 𝑖𝑛 ms 

1      
2      
3      

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑 𝑻𝑰𝑰𝒂𝒗𝒈
= ____________ ms   𝑁𝑜𝑟𝑚𝑎𝑙-𝑚𝑜𝑑𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝝎𝑰𝑰 = ____________ rad/sec 

 

Table IV: Table for beat frequency (Take readings for 5 coupling lengths and take 2 readings of time period 

for each coupling length) 

 

Sl. 
No. 

Coupling 
length (𝑙) 

Initial Time 
(𝑇𝑖) 𝑖𝑛 ms 

Final 
Time 

(𝑇𝑓) 𝑖𝑛 ms 

∆𝑇 
(𝑇𝑓 − 𝑇𝑖) 

𝑖𝑛 ms 

𝑇𝐵 = 2∆𝑇 
𝑖𝑛 ms 

Mean 𝑇𝐵 
Beat 

frequency 
(𝜔𝐵) 

1  
    

  
    

2  
    

  
    

3  
    

  
    

4  
    

  
    

5  
    

      
 

Table V: Table for oscillation frequency (Take readings for 5 coupling lengths and take 2 readings of time 

period for each coupling length) 

 

Sl. 
No. 

Coupling 
length 

(𝑙) 𝑖𝑛 cm 

No of 
osc. 
(𝑁) 

Initial 
Time 
(𝑇𝑖) 

𝑖𝑛 ms 

Final 
Time 

(𝑇𝑓) 
𝑖𝑛 ms 

∆𝑇 
(𝑇𝑓 − 𝑇𝑖) 

𝑖𝑛 ms 

𝑇𝐼𝐼𝐼 =
∆𝑇

𝑁
 

𝑖𝑛 ms 
Mean 𝑇𝐼𝐼𝐼 

Oscillation 
frequency 

(𝜔𝐼𝐼𝐼) 

1  
     

  
     

2  
     

  
     

3  
     

  
     

4  
     

  
     

5  
     

       

 



 

Calculations:  

 1. Calculate the various oscillation frequencies 𝜔0, 𝜔𝐼 , 𝜔𝐼𝐼 , 𝜔𝐼𝐼𝐼 and 𝜔𝐵. 

 2. Compare  

a) 𝜔𝐼 with  𝜔0 and comment. 

b) 𝜔𝐼𝐼𝐼 + 𝜔𝐵 with 𝜔𝐼𝐼 only for one particular coupling length for which you have 

calculated 𝑇𝐼𝐼. 

c) 𝜔𝐼𝐼𝐼 − 𝜔𝐵 with 𝜔𝐼 for all coupling lengths. 

 3. Plot √
2𝜔𝐵

𝜔0
⁄  𝑣𝑠 𝑙. This should be a straight line if the coupling is weak [Prove this]. 

 3.Calculate spring constant (𝑘) from the slope. 
  

Sl. 
No. 

Coupling length 
(𝑙) 𝑖𝑛 cm 

𝜔𝐵 
𝑖𝑛 rad/sec 

𝜔0 
𝑖𝑛 rad/sec √2𝜔𝐵

𝜔0
⁄  

1     

2     

3     

4     

5     

  

 4. Calculate 𝜔𝑠𝑝𝑟𝑖𝑛𝑔 and compare it with 𝜔0. 
 

Error Analysis:  

 1. Calculate the error in slop ∆𝑚 , using this calculate the error in spring constant∆𝑘. 

 2. Calculate the error in various oscillations frequencies ∆𝜔0, ∆𝜔𝐵 and ∆𝜔𝐼𝐼𝐼 for a particular 

 2. coupling length only. 

 

Final Result: Write your final results in this format - 𝑅𝑒𝑠𝑢𝑙𝑡 ± 𝐸𝑟𝑟𝑜𝑟. [All units should be mentioned] 

  All results should be in significant figures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

 

Aim: 

 

• To verify law of momentum conservation for elastic collision. 

• To calculate coefficient of restitution for elastic collision. 

 

 
 

 We shall study experimentally collisions in one-dimension using a linear air track.  A linear air 

track is an apparatus which enables us to produce motion of masses (gliders) in a straight line with very 

little friction.  The apparatus consists of a long tube, rectangular in cross section, with small holes spread 

uniformly over the two surfaces.  Air at high pressure is forced through these holes, using a blower.  Gliders 

move on the track.  These gliders barely touch the track, because they are lifted up by the air flowing 

through the holes.  This enables the gliders to move over the track with very little friction. To measure the 

velocities a timer and light barrier sensors are used. 
 

 
Preliminary experiments about the quality of the air track: 

 

To be able to appreciate the validity of the conclusions from the experiment it will be good to have some 

preliminary experiments to get familiar with the air track and other components. Note that velocity is 

measured using timers which get the signal from the sensors. Gliders carrying masses will be mounted 

with screens which block the sensor for a specified period which is read by the timers. You will also be 

given a starter which is basically a mechanical system for launching gliders with specified energy each 

time. The starting device has three reproducible initial energy settings and it is recommended that the 

second position be used for all measurements. Observe that once launched the gliders move back and 

forth several tens of times since the friction is very low. The experimental set-up is shown in Figure below. 
 

 



 

Learn how to use the sensor-timer to measure the velocity of the glider going through the sensor. There 

are two sensors and four displays on the timer. Two of the displays measure the time of the first pass and 

the second pass of an object through the first sensor. 

Similarly, the other two displays measure the time of the first pass and the second pass of an object 

through the second sensor. 
 

Look at the glider and the attachments. You can put the masses (cylindrical pellets) on the glider to 

increase its mass. A 10 cm screen can be put in vertical position on the glider, which passes through 

sensors during the motion of the glider.  
 

A fork with a rubber band can be attached to the glider and the plate with a plug into the other glider. 

These face each other and if the two gliders with these attachments move towards each other. They push 

each other to make elastic collision. Another type of attachment is for inelastic collision. A rod with a 

sharp needle can be attached to one glider and a tube with plasticine on the other glider. When the gliders 

collide, the pin gets fixed in the tube and the two gliders move together. 
 

 
 

 
Levelling and preliminary experiments: 

 

a) Start the Timer/Counter and set the measuring parameters for the velocity measurement as told 

by your instructor. 

b) Start the air blower and set the appropriate pressure (~3 𝑢𝑛𝑖𝑡𝑠). 

c) Place the light barrier that is connected to the Timer 1 jack to the left at the 60-cm mark. Position 

the light barrier that is connected to the Timer 2 jack to the right at the 140-cm mark. You may 

need to adjust these positions according to the mass used, so that the projectile sees both the 

light barriers. 

d) Mount the 10 cm screen on a glider. 

e) Adjust the air track until it is level. Allow the glider to move through the two light barriers at a 

constant velocity several times in order to determine whether there is a velocity gradient between 

the two light barriers. If necessary, readjust the air track. 
 

 
Elastic Collision: 

 

Keep the blower speed such that there is no turbulence and minimal friction. Weigh the target and 

projectile masses (𝑚𝑡  & 𝑚𝑝 respectively) with their elastic appendages. Using three firing speeds, [max 

gun, min gun, & by hand] for four sets of different mass combination [ bare-bare; (𝑚𝑡 + 300𝑔𝑚)-bare; 

bare-(𝑚𝑝 + 300𝑔𝑚); (as you wish)-(as you wish)] of target and projectile, perform the experiment with 

12 sets of data. 

Initially keep the target glider at rest. 
 

𝑡𝑝
𝑖 (ms) = time taken by the flag of the projectile to pass through the sensor before collision. 

 

𝑡𝑝
𝑓
(ms) = time taken by the flag of the projectile to pass through the sensor after collision. 

 

𝑡𝑡
𝑓
(ms) = time taken by the flag of the target to pass through the sensor after collision. 

 

As mentioned above the initial velocity (𝑣𝑡
𝑖) of the target is always kept at zero. 



 

Table for elastic collisions - 

 

Calculate (at home) - 
 

a) Calculate and plot {with all of these 12 data sets} 𝑃𝑓 𝑣𝑠. 𝑃𝑖  with error bars. Check that the 45° 

straight line comes within the scope of error bars of the straight line you plot. 

b) Calculate and plot {with all of these 12 data sets} 𝐸𝑘
𝑓
 𝑣𝑠 𝐸𝑘

𝑖  with error bars. Check that the 

45ostraight line comes within the scope of error bars of the straight line you plot. 

c) Calculate and plot the modulus of “velocity of separation” vs. modulus of “velocity of approach”. 

Hence find the coefficient of restitution, being the slope of the graph. 

d) Calculate the coefficient of restitution for each set of reading (12 values) and find the mean and 

standard deviation. As the number of data points are large, take this S.D. as the error in the 

coefficient of restitution. 
 

 
Inelastic Collision (Optional): 

 

Keep the blower speed as it was in the elastic case. Repeat the experiment with the target and projectile 

with the correct appendages. This time use only maximum and minimum firing speed. Weigh the two 

gliders bare mass. Here also the target is at rest initially. 

Use the target masses of 𝑚𝑡 , 𝑚𝑡 + 20 g ,𝑚𝑡 + 40 g ,𝑚𝑡 + 60 g ,𝑚𝑡 + 80 g 𝑎𝑛𝑑 𝑚𝑡 + 100 g , keeping 

𝑚𝑡 + 𝑚𝑝 + 100 g = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑀). 

Here you are going to measure only two times. One is projectile initial “𝑡𝑝
𝑖 ”,  and the other is combined 

final “𝑡𝑐
𝑓
“. Since in inelastic collision, the two gliders will stick to each other after collision. 

 
 
 
 
 
 

Firing 
Speed 

Mass 
Combination 

𝑡𝑝
𝑖  (s) 

before 
collision 

Projectile 
velocity 
before 

collision 
𝑣𝑝

𝑖  (m/s) 

𝑡𝑝
𝑓(s) 

after 
collision 

Projectile 
velocity 
after 

collision 
𝑣𝑝

𝑓
 (m/s) 

𝑡𝑡
𝑓(s) 

after 
collision 

Target 
velocity 
after 

collision 
𝑣𝑡

𝑓
 (m/s) 

Max 

1] 𝑚𝑡 − 𝑚𝑝 

2] 𝑚𝑡 + 300 − 𝑚𝑝  

3] 𝑚𝑡 − 𝑚𝑝 + 300 

4] 𝐴𝑠 𝑌𝑜𝑢 𝑊𝑖𝑠ℎ 

      

Min ---𝐷𝑂---       

Hand ---𝐷𝑂---       



 

Table for inelastic collisions -  

Firing 
Speed 

Mass of the 
Target 

Mass of the 
Projectile 

𝑡𝑝
𝑖  

𝑖𝑛 s 
𝑡𝑐
𝑓

 
𝑖𝑛 s 

𝑣𝑝
𝑖  

𝑖𝑛 m/s 
𝑣𝑐

𝑓
 

𝑖𝑛 m/s 

Max 

𝐵𝑎𝑟𝑒 
𝐵𝑎𝑟𝑒 + 20g 

𝑎𝑛𝑑 𝑠𝑜 𝑓𝑜𝑟𝑡ℎ 
𝑢𝑝 𝑡𝑜 𝐵𝑎𝑟𝑒 + 100g 

𝐵𝑎𝑟𝑒 +  100g 
𝐵𝑎𝑟𝑒 +  80g 
𝑎𝑛𝑑 𝑠𝑜 𝑓𝑜𝑟𝑡ℎ 
𝑢𝑝 𝑡𝑜 𝐵𝑎𝑟𝑒 

    

Min ---𝐷𝑂---      

 

Necessary Formula - 

Momentum conservation gives 

𝑚𝑝
′𝑣𝑝

𝑖 = [(𝑚𝑝 + ⋯) + (𝑚𝑡 + ⋯)]𝑣𝑐
𝑓

 

where 𝑚𝑝
′ = 𝑚𝑝 , 𝑚𝑝 + 20 g ,𝑚𝑝 + 40 g , 𝑚𝑝 + 60 g , 𝑚𝑝 + 80 g 𝑎𝑛𝑑 𝑚𝑝 + 100 g. 

 

Analysis (at home) - 

a) Calculate and plot the final vs. initial momentum graph as you did for elastic collisions. Graphs 

should be with error bars. 

b) Plot 
𝑣𝑐

𝑓

𝑣𝑝
𝑖  vs 𝑚𝑝

′ and find (𝑚𝑝 + 𝑚𝑡 + 100) gm from the graph and compare with the measured 

values of 𝑚𝑝 + 𝑚𝑡 + 100 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑀). 

c) Comment on why we are not interested in the kinetic energy and the coefficient of restitution in 

this part. 
 

Precautions 
1. Set the air blower to appropriate pressure (approx. 3 units) so that there is neither friction nor 

disturbance due to air. 

2. Clean the setup before starting the experiment so that there is no undue friction due to dust particles. 

3. Ensure that two light barrier sensors are parallel to each other. 

4. Ensure that the settings in Timer/Counter program are correct. 

5. Always put the same number of slotted weights on both sides of gliders as there could be toppling 

otherwise. 

6. Always ensure that impact takes place at a very slow speed so that the instrument is not harmed. 

7. The table should not be disturbed during the experiment. 

8. Always note velocities with the correct sign according to the convention set by you. Momentum should 

also be noted with correct sign. 

 

 

 

 

Reference: 
1. Kleppner and Kolenkow, An Introduction to Mechanics (McGraw Hill, 1978). 

2. Resnick & Halliday, Physics part 1 (John Wiley). 
 



 

 

Aim: 

Working Formulae: 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝑑𝑥

𝑑𝑡
     𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 (𝑃𝑖) = 𝑚𝑝𝑣𝑝

𝑖   [𝑣𝑡
𝑖 = 0.0 m/s] 

                  𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 (𝑃𝑓) = 𝑚𝑝𝑣𝑝
𝑓

+ 𝑚𝑡𝑣𝑡
𝑓

 

                                                   𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ = |𝑣𝑝
𝑖 − 𝑣𝑡

𝑖| = 𝑣𝑝
𝑖   [𝑣𝑡

𝑖 = 0.0 m/s] 

              𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 = |𝑣𝑡
𝑓

− 𝑣𝑝
𝑓
| 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑟𝑒𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 (𝑒) =
𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ
=

|𝑣𝑡
𝑓

− 𝑣𝑝
𝑓
|

𝑣𝑝
𝑖

 

Observation/Table: 

Least count of weighing machine =                                            Least count of timer =  

Mass of target (𝑚𝑡) =                                                                    Mass of projectile (𝑚𝑝) = 

Length of flag =  10 cm                                                                 Target velocity before collision =  0.0 m/s 

Mass 

Combinations 

Fi
ri

ng
 S

pe
ed

 

Before Collision After Collision 

Modulus of 
Velocity 

of 
Separation 

(m/s) 

Modulus of 
velocity 

of 
approach 

(m/s) 𝒕 𝒑𝒊
 in

 (
s)

 

𝒗
𝒑𝒊
 in

 (
m

/s
) 

 
𝑷

𝒊 
in

 
(k

g
∙m

/s
) 

𝒕 𝒑𝒇
 in

 (
s)

 

𝒕 𝒕𝒇
 in

 (
s)

 

𝒗
𝒑𝒇
 in

 (
m

/s
) 

𝒗
𝒕𝒇
 in

 (
m

/s
) 

𝑷
𝒇
 in

 
(k

g
∙m

/s
) 

𝒎𝒕 

𝒎𝒑 

Max           

Min           

𝒎𝒕 + 𝟏𝟎𝟎 

𝒎𝒑 

Max           

Min           

𝒎𝒕 

𝒎𝒑 + 𝟏𝟎𝟎  

Max           

Min           

𝒎𝒕 + 𝟐𝟎𝟎 

𝒎𝒑 

Max           

Min           

𝒎𝒕 

𝒎𝒑 + 𝟐𝟎𝟎 

Max           

Min           



 

Graph:  

1.   Plot 𝑃𝑓 vs 𝑃𝑖  (for calculation, use back page of graph paper). 

2.   Plot modulus of velocity of separation vs modulus of velocity of approach. 

Calculations:  

1.   Calculate slope (
𝑃𝑓

𝑃𝑖
⁄ ) of 𝑃𝑓 vs 𝑃𝑖  graph. 

2.   Calculate slope of modulus of velocity of separation vs modulus of velocity of approach graph 

2.   which gives the coefficient of restitution. 

Error Analysis:  

 2.   Calculate error in slope for both graphs. 

 

Final Result: Write your final results in this format - 𝑅𝑒𝑠𝑢𝑙𝑡 ± 𝐸𝑟𝑟𝑜𝑟. [All units should be mentioned] 

1.   The law of momentum conservation is verified with (
𝑃𝑓

𝑃𝑖
⁄ ) = 

2.   The coefficient of restitution (𝑒) = 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

Aim: 

 

• To find natural frequency of the hair spring. 

• To find the resonance curve (angular amplitude of the system vs. driving angular frequency). 

• To find damping constant of the system. 

 

 
 

 The phenomenon of resonance is encountered in almost all branches of science and engineering 

in some form or the other. In this experiment, we will study a mechanical system consisting of a coil spring 

and a motor to drive oscillation in the spring. Damping in the system is provided by inducing eddy currents. 
 

 
 

 In a forced damped oscillatory system, a sinusoidal force 𝐹 = 𝐹0 cos𝜔𝑡  is applied on a system 

which can oscillate by itself with a natural angular frequency 𝜔0. The frequency 𝜔 is called driving 

frequency. The system also has a damping which is generally taken proportional to the velocity.   
 

Pohl’s torsional pendulum experiment is an excellent example of forced damped angular harmonic 

oscillations. The oscillations are angular and hence angular quantities are used. 
 

 
 

The basic equation for an angular oscillator is 
 

 𝐼
𝑑2𝜃

𝑑𝑡2
= 𝜏𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔 + 𝜏𝑑𝑎𝑚𝑝𝑖𝑛𝑔 + 𝜏𝑑𝑟𝑖𝑣𝑖𝑛𝑔 ................... (1) 

 

where, 𝐼 = 𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔 𝑠𝑦𝑠𝑡𝑒𝑚 



 

Each of the torques on the right are described below. 
 

𝜏𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔 = −𝑘𝜃 (𝐼𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒) 
 

 

 

where, 
 

 

 

𝑘 = 𝑇𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑟𝑖𝑛𝑔 
𝜃 = 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟 

 This is the torque responsible for setting up the angular oscillations. It always acts in the 
direction opposite to the angular displacement of the body and thus brings it back to its equilibrium 
position. 

 

𝜏𝑑𝑎𝑚𝑝𝑖𝑛𝑔 = −𝑏
𝑑𝜃

𝑑𝑡
 

 

 

 

 

 

 

where, 
 

𝑏 = 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡ℎ𝑎𝑡 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑠ℎ𝑎𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟 𝑎𝑛𝑑 𝑡ℎ𝑒 
 𝑏 = 𝑚𝑒𝑑𝑖𝑢𝑚 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑤ℎ𝑖𝑐ℎ 𝑖𝑡 𝑚𝑜𝑣𝑒𝑠 
𝑑𝜃

𝑑𝑡
= 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟 

 This torque acts in the direction opposite to the motion of the oscillator and has a retarding 
effect on the motion of the body. This torque can be applied by many factors, like the use of a dashpot, 
presence of friction etc. 

 

𝜏𝑑𝑟𝑖𝑣𝑖𝑛𝑔 = 𝜏0 cos𝜔𝑡 
 

 
 

where, 
 

 
 

𝜔 = 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑡𝑜𝑟𝑞𝑢𝑒 
𝜏0 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑜𝑟𝑞𝑢𝑒 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 

 This is the torque that is externally applied by the moving rod on the spring. This torque is 
independent of the motion of the oscillator. 

 

Now that we know the torques involved, let’s analyze the motion analytically. Rearranging 𝑒𝑞. (1) 

and putting in the expressions for the various torques, we get 
 

𝑑2𝜃

𝑑𝑡2
+

𝑏

𝐼

𝑑𝜃

𝑑𝑡
+

𝑘

𝐼
𝜃 =

𝜏0

𝐼
cos𝜔𝑡 

 

⇒
𝑑2𝜃

𝑑𝑡2
+ 𝛾

𝑑𝜃

𝑑𝑡
+ 𝜔0

2𝜃 = 𝐴0 cos𝜔𝑡 
 

 

where, 𝛾 = 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =
𝑏

𝐼
 

 𝐴0 =
𝜏0

𝐼
 

 

and 𝜔0 = √
𝑘

𝐼
= 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 

𝜔0 = 𝑧𝑖𝑖 = 𝑤ℎ𝑒𝑛 𝑛𝑜 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑎𝑛𝑑 𝑛𝑜 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒 𝑖𝑠 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 
 

Writing the solution as 𝜃 = 𝜃0 cos(𝜔𝑡 + 𝜑)  and comparing coefficients on both sides, we get 
 

𝜃0 =
𝐴0

√(𝜔0
2 − 𝜔2)2 + (𝜔𝛾)2

 and 𝜑 = tan−1 (
𝜔𝛾

𝜔0
2 − 𝜔2

) 

 

Damping constant 𝛾 is given by √2(𝜔0
2 − 𝜔𝑟

2). 



 

This equation of motion shows that the oscillator performs an angular simple harmonic motion 

with a constant amplitude. However, note that the amplitude and the phase shift depend on the relative 

magnitudes of 𝜔 and 𝜔0. 
 

The most interesting situation arises when the driving frequency and frequency of oscillation of 

the oscillator match exactly. As can be seen from 𝑒𝑞. (2), the amplitude 𝜃0 reaches very nearly maximum 

of 
𝜏0

𝐼𝜔𝛾⁄ . This is known as the phenomenon of resonance. This experiment is all about analyzing the 

various aspects of resonance. 
 

Another interesting aspect of resonance is the phase difference between the driving force and the 

angular motion of the oscillator. For frequency much smaller than the natural frequency, they are in phase 

and at frequencies beyond the resonance they get out of phase by 𝜋. 
 

The damping in this experiment is provided by induced emf in the coil due to the motion of the 

oscillator through it, and the force thereof. A magnetic field is set up due to the copper coil by feeding in 

a current in it. When the oscillator moves through the field, there is a change in magnetic flux, which 

induces an emf and hence an induced current in the oscillator. This current carrying oscillator placed in 

the magnetic field of the coil experiences a retarding force and slows down. This is how the oscillatory 

motion of the oscillator gets damped. The damping is expected to be proportional to the current in the 

electromagnet. 
 

 
 

 Using the "grob" (rough) and "fein" (fine) controls on the power supply box the frequency of the 

driving force can be changed. A knob on the power supply controls a damping magnet. Driven oscillations, 

under-damped, over-damped, and critically damped motion can be shown, and the maximum amplitude 

in the presence of various damping forces can be ascertained.  
 

 Do not exceed the allowable damping current (0.5 A) for more than a few seconds at a time, or 

the coil may burn out. 
 

 
Step 1: Make Proper Connection 

 

a) Two chords connect the regulated power dc supply to the power supply box of the torsion 

pendulum. Request the instructor to check the right sockets. 

b) Another pair of chords connect the regulated ac power supply to the damping magnet. 

c) Note that the speed of the motor of the power supply box can be controlled both by changing the 

value of voltage in the power dc supply and also by using “grob” and "Fein" controls on the power 

supply box. 

 

 
Step 2: Perform The Resonance Experiment 

 

a) Find out the natural frequency of the system from free vibrations. Just oscillate it without 

switching on any of the power supplies and measure the frequency of oscillation. This will give you 

an idea of the range of frequencies (speed of motor) to be swept to obtain resonance. Write your 

observation. Take at least 5 observations. 
 



 

b) Now you start taking readings. In this step you will draw and observe the graph between the 

amplitude of the oscillating pendulum at steady state and the angular frequency of the motor. 

Choose a particular value of damping current between 0.25 A and 0.45 A by turning the knobs on 

the AC power supply. Now adjust the speed of the motor by changing the value of voltage through 

the regulated dc supply. This should be done in such a way that you can achieve more readings 

near the resonance. Start taking values from minimum angular amplitude. 

[𝑁𝑜𝑡𝑒: 𝑇ℎ𝑖𝑠 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑛 𝑎𝑝𝑝𝑎𝑟𝑎𝑡𝑢𝑠 ℎ𝑎𝑠 𝑛𝑜 𝑢𝑛𝑖𝑡𝑠. 𝑇𝑎𝑘𝑒 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 20 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠. ] 

c) Note the time period of revolutions of the motor. This gives the driving frequency . Measure the 

amplitude of the oscillating pendulum when steady state is achieved. Note that when the steady 

state is reached the value of amplitude will not change. Get the steady state amplitude as a 

function of the driving frequency. Alter the number of revolutions used to calculate the time period 

of motor revolution depending upon the speed of the motor. More number of revolutions should 

be used when the speed is higher to minimize the error. Hence for a particular value of the 

damping current plot a graph between the angular displacement of the oscillating pendulum and 

the angular frequency of the rotating motor. 

d) Find the value of the driving frequency 𝜔 for which the angular amplitude of oscillation is 

maximum. Call it 𝜔𝑟. Find the two values of 𝜔 for which the angular amplitude becomes half the 

maximum amplitude. The difference ∆𝜔 = 𝜔2 − 𝜔1 shows the sharpness of resonance. 

e) [𝑶𝒑𝒕𝒊𝒐𝒏𝒂𝒍] Repeat parts (𝑏), (𝑐) 𝑎𝑛𝑑 (𝑑) for at least two more damping currents and compare 

the sharpness of resonance. 

 

 
Step 3: Optional Part 

 

Observe the phase difference between the driver and the pendulum for frequencies lower and also 

for frequencies higher than the resonance frequency. State your qualitative conclusions. Give a 

schematic sketch of phase difference as a function of 𝜔. 

Precautions 
1. Check that all the connections are made properly. 

2. There should be minimum disturbance during the experiment. Turning off the fans is recommended. 

3. Level of the rod should not be changed during the experiment. 

4. Wait until steady state is reached. Have patience, sometimes it may take time. 

5. Don’t feed more than a maximum of 1 ampere current into electromagnet otherwise it may burn out. 

6. Near resonance, take as many readings as possible so that the resonance frequency can be located 

more precisely. 
 

 
 

 

1. Why is 𝜔𝑟 < 𝜔0? Find out a relation between the two for the condition of 
resonance. 

2. How does 𝛾 depend on damping current? Does 𝜔𝑟  depend on 𝛾? 
 

Reference: 1. Kleppner and Kolenkow, An Introduction to Mechanics (McGraw Hill, 1978). 
 



 

 

Aim: 

Theory: 

Working Formulae: 

𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦  𝜔0 =
2𝜋

𝑇
 

𝐷𝑎𝑚𝑝𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  𝛾 = √2(𝜔0
2 − 𝜔𝑟

2) 

where, 

 𝑇 = 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 

and 𝜔𝑟 = 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦. 
 

Observation/Table: 

Least count of stopwatch =                                               Least count of amplitude scale = 

Table I: Table for natural frequency (Take at least 4 readings) 

Sl. 
No. 

No. of 
oscillations (𝑁) 

Total Time 
(𝑡) 𝑖𝑛 ms 

Time Period 

(𝑇 =
𝑡

𝑁
)  𝑖𝑛 ms 

Frequency 
(𝜔) 𝑖𝑛 𝑟𝑎𝑑/𝑠𝑒𝑐 

1     

2     

3     

4     
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝝎𝟎 = ____________ rad/sec 
 

Table II: Table for resonance frequency (Take at least 16-18 readings, max near the resonance) 

𝐷𝑎𝑚𝑝𝑖𝑛𝑔 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 0.3 A 

Sl. 
No. 

Voltage 
(𝑉) 

𝑖𝑛 𝑣𝑜𝑙𝑡 

Total time for 10 
oscillations 
(𝑡) 𝑖𝑛 sec 

Time Period 

(𝑇 =
𝑡

10
) 

𝑖𝑛 ms 

Driving 
Frequency 

(𝜔) 𝑖𝑛 𝑟𝑎𝑑/𝑠𝑒𝑐 

Amplitude 

𝐴 =
𝐴1 + 𝐴2

2
 unit 

1      

2      

..      

18      

 



 

Graph:   Plot graph of amplitude (𝐴) vs driving frequency (𝜔). 

  → Draw graph with proper label, title & max. point near resonance. 

  → Encircle all data points and draw a smooth graph. 

  → Indicate resonance frequency and band width. 

Calculations:  

 1.   Natural frequency and resonance frequency. 

2.   Band width and damping constant. 

Error Analysis:  Calculate errors in - 

  1. Natural frequency 

  2. Resonance frequency 

  3. Band width 

  4. Damping constant 

 

Final Result:  Write your final results in this format - 𝑅𝑒𝑠𝑢𝑙𝑡 ± 𝐸𝑟𝑟𝑜𝑟. [All units should be mentioned] 

 1. Natural frequency (𝜔0) = 

 2. Resonance frequency (𝜔𝑟) = 

 3. Band width (𝜔𝑏) = 

 4. Damping constant (𝛾) = 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

This part may 
be neglected 

 
 

 

Aim: 

 • To study the angular motion and find the moment of inertia of a bicycle wheel. 

 

 
 

A bicycle wheel is mounted in a bracket fixed to the wall. A brass cylinder (called collar) with a pin 𝑃 

protruding out from it is attached to the axle of the wheel. A small mass 𝑚, is attached to a string the 

other end of which has a small loop which is wound around the pin 𝑃 (𝐹𝑖𝑔. 1), thus enabling the string to 

be wound uniformly around the collar.  As the mass descends under the action of gravity it imparts an 

angular acceleration to the wheel. As long as the string is wrapped on the collar the velocity of the mass 

𝑣, and the angular speed of the wheel 𝜔, are related to each other as 𝑣 = 𝜔𝑟, where 𝑟 is the radius of the 

collar.  Suppose that the loop in the pin falls off when the mass has fallen through a height ℎ below the 

point from where the mass started descending. After this the wheel goes on rotating by virtue of its 

rotational inertia but comes to rest after some time because of frictional losses of energy. At the instant 

the thread leaves the pin, we have 
 

𝐿𝑜𝑠𝑠 𝑖𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑚 = 𝐺𝑎𝑖𝑛 𝑖𝑛 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑚 + 𝐺𝑎𝑖𝑛 𝑖𝑛 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑤ℎ𝑒𝑒𝑙 

 + 𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑡 𝑖𝑛 𝑜𝑣𝑒𝑟𝑐𝑜𝑚𝑖𝑛𝑔 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 
 

 ⇒ 𝑚𝑔ℎ = ∫ 𝑚𝑣 𝑑𝑣
𝑣0

0

+ ∫ 𝐼𝜔 𝑑𝜔
𝜔0

0

+ 𝑛1𝑓  

 ⇒ 𝑚gℎ =
𝑚𝑣0

2

2
+

𝐼𝜔0
2

2
+ 𝑛1𝑓 =

𝑚𝑟2𝜔0
2

2
+

𝐼𝜔0
2

2
+ 𝑛1𝑓 ................... (1) 

 

 where 𝐼 is the moment of inertia of the wheel with its axle etc., 𝑓 is the (unknown) amount of 

energy lost per revolution, 𝑛1 is the number of revolutions made by the wheel while 𝑚 travelled through 

ℎ, 𝑣0 is the maximum velocity of mass and 𝜔0 is the maximum angular speed of the cycle wheel when the 

loop comes off the pin. 

After this, the angular speed goes on diminishing and the wheel comes to rest when the energy 
𝐼𝜔0

2

2
⁄  

has been used up in overcoming friction. If the wheel has, by then, made 𝑛2 further turns we can write 
 

𝐼𝜔0
2

2
= 𝑛2𝑓  ⇒ 𝑓 =

𝐼𝜔0
2

2𝑛2
 

 
 

Substituting this in 𝑒𝑞. (1), we get 
 

 𝑚gℎ =
𝑚𝑟2𝜔0

2

2
+

𝐼𝜔0
2

2
+

𝐼𝜔0
2𝑛1

2𝑛2
 

 

 ⇒ 𝐼 =
2𝑚gℎ − 𝑚𝜔0

2𝑟2

𝜔0
2 (1 +

𝑛1

𝑛2
)

 ................... (2) 

 



 

A measurement of the various quantities enables 𝐼 to be determined.  You will probably find that the first 

term in 𝑒𝑞. (1) or (2) is negligible. In that case (but only if your estimate of other errors is greater than 

this term) you may neglect it. 
 

 
 

→ Get familiar with the instruments. Locate the collar and the pin. Estimate the height available for the 

mass to fall and decide how many full turns 𝑛1 you wish to wrap with this height. The height fallen 

ℎ = 2𝜋𝑟𝑛1 will be easy to determine. 

→ Study the action of the stopwatch given to you. If there are three events 𝐴, 𝐵 𝑎𝑛𝑑 𝐶 in this order, the 

stopwatch can measure time intervals between the event 𝐴 𝑎𝑛𝑑 𝐵, and also between the event 

𝐵 𝑎𝑛𝑑 𝐶 in one go. Learn how to do it. 

→ Also learn how to use light barrier detector to measure time of one revolution of the wheel. The 

instructor may explain this to students collectively. 

→ Before beginning to take observations 

check if the wheel rotates freely. 

Make a loop at the free end of the 

string, put it around the pin and wrap 

𝑛1 turns of the string on the collar. 𝑛1 

will be an exact integer. Leave the 

mass from here, the wheel will 

accelerate till it completes 𝑛1 turns 

(the string slips off the pin at this 

instant) and decelerates till it 

completes further 𝑛 turns (it comes to 

rest now). You already know 𝑛1. You 

have to measure 𝑛 as well as time 𝑡1 

during acceleration and time 𝑡2 during 

deceleration. 

𝑛1 was arranged to be a whole 

number but it may not be possible to 

make 𝑛 a whole number. So, you must 

devise some way of measuring 

fractional revolutions. 

→ Make observations at least three times in order to improve the accuracy of data. The velocity of the 

mass at the end of the descent is 𝑣 = 2ℎ
𝑡1⁄  and the angular speed of the wheel at this instant is 

 𝜔 =
𝑣

𝑟
=

2ℎ

𝑟𝑡1
 ................... (3) 

You can also get maximum 𝜔 from both acceleration (𝜔1) and deceleration (𝜔2) part. It is 

 𝜔1,2 =
4𝜋𝑛1,2

𝑡1,2
 ................... (4) 

Theoretically the 𝜔1 and 𝜔2 is equal. 

Make all measurements for at least three values of 𝑚. 

Collar 

Wheel 

m 

m 

Floo

h 

Initial position 

When the string 
slips off 

𝑭𝒊𝒈. 𝟏 



 

→ The graph of 𝜔 vs 𝑡 is a straight line with 

+𝑣𝑒 slope during acceleration and during 

deceleration it will be a straight line with 

−𝑣𝑒 slope. 
 

The relation between 𝜔 and 𝑡 during 

acceleration is given by 
 

𝜔 = (
𝜔1

𝑡1
) 𝑡 

 

The relation between 𝜔 and 𝑡 during 

deceleration is given by 
 

𝜔 = −(
𝜔2

𝑡2
) 𝑡 + 𝜔2 (1 +

𝑡1
𝑡2

) 

→ You now have all the quantities you need to compute 𝐼 from 𝑒𝑞. (3).  You will find that the values of 

𝜔 (as also those of 𝑣) obtained by measurement embodied in 𝑒𝑞𝑛𝑠. (4) & (5). Choose the one you 

think to be the more accurate one and explain why you think so. 

→ (𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙) In order to estimate the effect of friction compute 𝐼 also from 
 

 𝑚gℎ =
𝑚𝑟2𝜔2

2
+

𝐼𝜔2

2
 ................... (5) 

 

which is 𝑒𝑞. (3) except for the term in 𝑓. Calculate the fractional difference. 

 

 

You may also do the following: 
➔ Fasten two clamps of equal masses 𝑚1 at the diametrically opposite positions 

of the rim of the wheel and get the moment of inertia 𝐼1. 
➔ Check if you get 𝐼1 − 𝐼0 = 2𝑚1𝑅

2 as expected from the theory. 
 

 
 

 

1. When 𝑚 strikes the floor sound and heat energy are produced. Does it affect your 
result? 

2. How would it affect your results if the string is not evenly wound on the axle? 

3. Suggest a more accurate method of measuring 𝜔. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reference: Resnick and Halliday, Part 1, pp. 251-252. 
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Aim: 

Working Formulae: 

𝐼 =
2𝑚gℎ − 𝑚𝜔0

2𝑟2

𝜔0
2 (1 +

𝑛1

𝑛2
)

 

where ℎ = 2𝜋𝑟𝑛1 

∴ 𝐼 =
(2𝑚g × 2𝜋𝑟𝑛1) − 𝑚𝜔0

2𝑟2

𝜔0
2 (1 +

𝑛1

𝑛2
)

 

⇒ 𝐼 =

4𝜋𝑛1𝑚g𝑟

𝜔0
2 − 𝑚𝑟2

(1 +
𝑛1

𝑛2
)

 

Angular velocity, 𝜔 =
4𝜋𝑛1

𝑡1
=

4𝜋𝑛2

𝑡2
 

Standard deviation (𝜎) = √
1

𝑁 − 1
∑(𝑥𝑖 − 𝑥̅)2

𝑁

𝑖=1

  

Observation/Table: 

Vernier constant (𝑣. 𝑐) of vernier calipers =                                                                          [𝑆ℎ𝑜𝑤 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛]  

Least count of stopwatch = 

Least count of weighing machine = 

Least count of protractor = 

Table I: Table for radius of cylinder 

Sl. 
No. 

Main scale reading 
(M. S. R) 
𝑖𝑛 mm 

Vernier scale reading 
(V. S. R) 

Total Diameter 
(𝑑 = M. S. R + V. S. R × 𝑣. 𝑐) 

𝑖𝑛 mm 

1    

2    

3    

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝒅 = ____________ m, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 𝒓 =
𝒅

𝟐
= ____________ m 

 

𝐼 = 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑜𝑓 𝑏𝑖𝑐𝑦𝑐𝑙𝑒 𝑤ℎ𝑒𝑒𝑙 

𝜔 = 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑤ℎ𝑒𝑛 𝑠𝑡𝑟𝑖𝑛𝑔 𝑔𝑒𝑡𝑠 𝑑𝑒𝑡𝑎𝑐ℎ𝑒𝑑 

𝑛1 = 𝑛𝑜. 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑛2 = 𝑛𝑜. 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 



 

Table II: Table for moment of inertia 

                (for two different values of mass and three different readings for each mass) 

Mass 
(𝑚) 

𝑖𝑛 gm 

N
o.

 o
f 

ro
ta

ti
on

 
du

ri
ng

 a
cc

el
er

at
io

n 
(𝑛

1
) 

Ti
m

e 
ta

ke
n 

du
ri

ng
 a

cc
el

er
at

io
n 

(𝑡
1
) 

N
o.

 o
f 

ro
ta

ti
on

 
du

ri
ng

 d
ec

el
er

at
io

n 
(𝑛

2
) 

Ti
m

e 
ta

ke
n 

du
ri

ng
 d

ec
el

er
at

io
n 

(𝑡
2
) 

An
gu

la
r 

ve
lo

ci
ty

 
du

ri
ng

 a
cc

el
er

at
io

n 
(𝜔

1
) 

An
gu

la
r 

ve
lo

ci
ty

 
du

ri
ng

 d
ec

el
er

at
io

n 
(𝜔

2
) 

Av
er

ag
e 

An
gu

la
r 

ve
lo

ci
ty

 
(𝜔

) 

Moment 
of Inertia 

(𝐼) 
𝑖𝑛 kg ∙ m2 

𝒎𝟏  
     

       
     

𝒎𝟐  
     

       
     

𝒎𝟑  
     

       
     

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑰𝒂𝒗 = ____________ kg ∙ m2 
 

Calculations: [Each student in a group has to choose different set of readings to show calculation] 

1. Angular speed of cycle wheel (𝜔). 

2. Moment of inertia (𝐼). 

 

Error Analysis: 

 1. Calculate standard deviation (𝜎𝐼) in moment of inertia. 

 2. Determine propagation error (𝑓𝑜𝑟 𝑎𝑛𝑦 𝑜𝑛𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡) of moment of inertia. 

 

Final Result:  

Write your final results in this format - 𝑅𝑒𝑠𝑢𝑙𝑡 ± 𝐸𝑟𝑟𝑜𝑟. [All units should be mentioned (𝑖𝑛 𝑆. 𝐼. )] 

Moment of inertia (𝐼) = 𝐼𝑎𝑣 ± ∆𝐼. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

Aim: 

 

• To study the flux and emf in a solenoid coil as a function of time when a magnet passes through it. 

• To find maximum emf and total flux as a function of the velocity of the magnet. 

 

 
 

When the magnetic flux through a coil changes, an emf is produced in the coil which is given by 

 𝜀 = −
𝑑𝜑

𝑑𝑡
 ................... (1) 

This is Faraday’s law of induction. The objective of this experiment is to measure the induced emf 𝜀 as a 

function of time when a bar magnet moves through a solenoid with a velocity 𝑣. 
 

Consider a fixed solenoid of finite length 

placed with its axis along the 𝑥-axis. A bar 

magnet moves along the 𝑥-axis with a 

speed 𝑣. Let 𝑥 denotes the coordinate of 

the center of the magnet (Can you guess 

how will the flux change as a function of 

𝑥?). The flux through the 𝑖-th turn of the 

solenoid is 𝜑𝑖 = ∫𝐵𝑥𝑑𝐴, where 𝑑𝐴 is an 

area element in the plane of the turn. The 

total flux through the solenoid 𝜑 = ∑ 𝜑𝑖𝑖  

where summation is made over all the 

turns. 𝐹𝑖𝑔. 1(𝑎) shows the magnetic field 

lines due to a bar magnet. Consider the 

situation in 𝐹𝑖𝑔. 1(𝑏). As the magnet 

comes closer, 𝜑𝑖 through each turn is 

positive and increases. When the magnet 

goes in [𝐹𝑖𝑔. 1(𝑐)], the flux through turns 

like 𝐸𝐹 will decrease as the magnet moves 

ahead and the flux through turns like 𝐴𝐵 

will increase. Till the magnet reaches the 

middle, the net effect is that the total flux 

𝜑 increases. 
 

As the magnet moves in the second half of 

the solenoid, more number of turns are left behind from where contribution to 𝜑 decreases. Net result is 

that 𝜑 starts decreasing. This continues even after the magnet comes out. Convince yourself that the flux 

changes as a function of 𝑥 as shown in 𝐹𝑖𝑔. 2(𝑎). 

𝑭𝒊𝒈. 𝟏 



 

The emf induced will be 
 

𝜀 = −
𝑑𝜑

𝑑𝑡
= −

𝑑𝜑

𝑑𝑥
∙
𝑑𝑥

𝑑𝑡
= −𝑣

𝑑𝜑

𝑑𝑥
 

 

𝑌𝑜𝑢 𝑐𝑎𝑛 𝑤𝑜𝑟𝑘 𝑜𝑢𝑡 𝑡ℎ𝑒 𝑠ℎ𝑎𝑝𝑒 𝑜𝑓 
𝑑𝜑

𝑑𝑥
 

𝑓𝑟𝑜𝑚 𝐹𝑖𝑔. 2 (𝑎) , 𝑖𝑡 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑙𝑖𝑘𝑒 𝑡ℎ𝑎𝑡 

𝑠ℎ𝑜𝑤𝑛 𝑖𝑛 𝐹𝑖𝑔. 2 (𝑏). 
 

 
 

 
Oscillating Frame: 

 

A simple apparatus has been designed to study the effect of flux change when a magnet goes at different 

rates through a coil of suitable area of cross section. A rigid frame of aluminum having the lower portion 

in the shape of a circular arc is pivoted at one point.  The whole frame can oscillate freely in its own plane, 

about a horizontal axis passing through the pivot (𝐹𝑖𝑔. 3). A bar magnet is mounted at the center of the 

arc and the arc passes through coil 𝐶.  The angular amplitude can be read by means of a scale and a 

pointer.  
 

If we leave the frame from an initial angular 

position 𝜃0, it will oscillate with a time period 
 

𝑇 = 2𝜋√
𝐼

𝑀g𝑑
 

 

where 𝑑 is the distance of the point of 

suspension (center of circle) from the center 

of mass. 
 

You can check that the angular speed of the 

frame, when it passes through the 

equilibrium position, is 

𝜔𝑚𝑎𝑥 =
4𝜋

𝑇
sin (

𝜃0

2
) 

 

and hence the speed of the magnet when it 

is at the center of the solenoid is 

 𝑉𝑚𝑎𝑥 =
4𝜋𝑅

𝑇
sin (

𝜃0

2
) ................... (2) 

 

where 𝑅 is the radius of the circular arc of the frame. There will be small variation in the speed of the 

magnet as it goes through the solenoid, but for qualitative understanding, you can assume that it moves 

in the solenoid with roughly the same speed as given in 𝑒𝑞. (2). 
 

 
Computer Interface: 

 

The emf induced between the ends of the coil is directly read by the PC. The software 'Measure' installed 

in the PC gives you a graph of 𝜀 versus 𝑡. 

𝑭𝒊𝒈. 𝟑 

𝑥 𝑥 

𝜑 𝑑𝜑

𝑑𝑥
 

𝑭𝒊𝒈. 𝟐 

(𝑎) (𝑏) 



 

Useful Features of The Software ‘Measure’ 
 

It is easy to use the software given to you. Take a few minutes to familiarize yourself with it before going 

on to do the detailed experiment. All you have to do is to click the required icon given at the top. Some of 

the important ones are as follows - 
 

Arrow In this mode simply point the cursor at the required point to obtain values of the co-ordinates. 

Mark 
Use this to mark a portion of the curve. The 𝑥-coordinates of the marked portion are shown on 
the bottom. The marked portion is highlighted in a different color. 

Survey 
You can adjust the left bottom and right top co-ordinates of the cursor box to obtain coordinates 
and their differences in this mode. You can use this to calculate slopes around a point. 

Show 
Integral 

Mark the portion of the curve for which you need to calculate the integral and then click this 
icon to obtain the value. If you need to start from the origin each time, take the cursor out of 
the plotting area and drag it across the origin to ensure that the starting point is the same. 

Slope 
Mark the required portion of the curve for which you need the slope and then click this icon to 
get slope. However, we recommend the use of survey mode to get slope more accurately. 

 

 
 

Ensure that the support for the apparatus is vertical by adjusting leveling screws. As far as possible, try to 

make zero of the scale as the mean position. Center the magnet inside the coil. 

 

 
Play with the system 

 

Connect the ends of the solenoid to the cobra interface with a bar magnet at its place, release the frame 

from the angular position 𝜃0. Stop it as it completes half oscillation. Look at the 𝜀 𝑣𝑠 𝑡 curve on the PC 

screen. Is it as you expect from Faraday's law? Let the frame oscillate for 2-3 rounds and record 𝜀 𝑣𝑠 𝑡. 

Can you locate the point on the curve, when the magnet entered the coil. Practice on finding slope and 

integrating the curve under desired limits using the software MEASURE. 
 

 
Measure the time period T 

 

First find out the time period of small oscillation 𝑇 for the apparatus from the 𝜀 versus 𝑡 which gets 

recorded on the PC.  Measure the time period from the plot on your computer screen. 
 

Make sure you account for whole one cycle while measuring T from the PC screen. 

 

 
Plot of 𝝋(𝒕) 

 

Record one or two oscillations on the PC. Focus on only one of them by using magnification button. Use 

the integration feature in the software to obtain the flux 𝜑 as a function of time. You may integrate only 

half of the pulse since the pulse is highly symmetric. Plot this flux on a graph paper for the complete pulse. 

Write how much is the maximum flux. Find the maximum flux for different initial angular displacement 

𝜃0. What do you observe? 



 

 
𝑽𝒎𝒂𝒙 dependence of 𝜺𝒎𝒂𝒙 

 

At what position of the magnet is the emf maximum? At what position of the magnet is the flux maximum? 

Change the speed of the magnet in the solenoid by releasing the frame from different initial angular 

position 𝜃0. As the speed is more, the flux change will take place faster and the induced emf will be more. 

Record the emf vs time for several values of 𝜃0, get 𝑉𝑚𝑎𝑥 from 𝑒𝑞. (3) and 𝜀𝑚𝑎𝑥 from the 𝜀 − 𝑡 plot on the 

PC screen. Plot on a graph paper 𝜀𝑚𝑎𝑥 vs 𝑉𝑚𝑎𝑥. 

 

 
(𝒅𝜺 𝒅𝒕⁄ )𝒎𝒂𝒙 as a function of 𝑽𝒎𝒂𝒙

𝟐  

 

As 𝜀𝑚𝑎𝑥 is related to 𝑉𝑚𝑎𝑥, so is (𝑑𝜀/𝑑𝑡)𝑚𝑎𝑥  with 𝑉𝑚𝑎𝑥
2 . Use the 'SURVEY' mode of the software to calculate 

the slope (𝑑𝜀/𝑑𝑡) from the 𝜀 −  𝑡 curve and find (𝑑𝜀/𝑑𝑡)𝑚𝑎𝑥. Do it for several values of 𝜃0 and plot 

(𝑑𝜀/𝑑𝑡)𝑚𝑎𝑥 vs 𝑉𝑚𝑎𝑥
2 . 

 

 

Is there a relation between 𝜀𝑚𝑎𝑥 and 𝑉𝑚𝑎𝑥? From your 𝜑(𝑡) plot you will notice that 
the rate of change of 𝜑  is maximum for positions close to the mean position 
(specially for amplitudes so that the magnet is initially far from the coil). The rate of 
change of velocity near the mean position is small and hence can be considered 
close to 𝑉𝑚𝑎𝑥. Hence, we can expect under these assumptions 
 

𝜀𝑚𝑎𝑥 = −(
𝑑𝜑

𝑑𝜃
)
𝑚𝑎𝑥

𝜔𝑚𝑎𝑥 
 

To test the above relations record one or two oscillations for several values of 
amplitudes as given in the table. For each case choose one pulse and obtain 𝜀𝑚𝑎𝑥, 
slope at mean position and 𝜑. For calculating slope use the ‘survey’ mode to obtain 
∆𝑥 and ∆𝑦 around the point of interest. For calculating 𝜑 use ‘Show integral’ mode 
as before. 

 

 
 

 

1. Estimate the distance from the mean position to the point at which the induced 
emf is maximum. 

2. Is it necessary that the magnet passes through the central axis of the coil to 
obtain maximum emf? 

 
 
 



 

 

Aim: 

Working Formulae: 

Observation/Table: 

Least count of scale =                                                         Least count of angular scale = 

Table I: Table for 𝑉𝑚𝑎𝑥 and 𝜀𝑚𝑎𝑥 

𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑎𝑟𝑐 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑟𝑎𝑚𝑒 (𝑅) = ____________ cm = ____________ m 

No. 
of 

obs. An
gl

e 
(𝜽

𝟎
) 

(𝑖
𝑛
 𝑑

𝑒𝑔
𝑟𝑒

𝑒
) 

𝑻𝟏 
(𝑖𝑛 𝑚𝑠) 

𝑻𝟐 
(𝑖𝑛 𝑚𝑠) 

Ti
m

e 
Pe

ri
od

 
[𝑻

=
𝑻

𝟐
−

𝑻
𝟏
] 

(𝑖
𝑛
 𝑚

𝑠)
 

𝑽𝒎𝒂𝒙 
(𝑖𝑛 𝑚/𝑠) 

𝑬𝒎𝒂𝒙 
(𝑖𝑛 volt) 

𝑬𝒎𝒊𝒏 
(𝑖𝑛 volt) 

|𝜺𝒎𝒂𝒙| =
𝑬𝒎𝒂𝒙 − 𝑬𝒎𝒊𝒏

𝟐
 

(𝑖𝑛 volt) 

1 5°        
2 10°        
3 15°        
4 20°        
5 25°        
6 30°        
7 35°        

 

Table II: Table for 𝑓𝑙𝑢𝑥 (𝜑) and 𝑡𝑖𝑚𝑒 (𝑡) 

No. of 
observations 

Time (𝒕) 
𝑖𝑛 ms 

Flux (𝝋) 
𝑖𝑛 V ∙ ms 

1   
2   
3   
4   
5   

 
Calculations:  Show calculations of 𝑉𝑚𝑎𝑥 for all amplitudes. 

Graph:  Write down the title, unit, and smallest division in each graph and use the full graph paper. 

1. Plot graph of 𝑉𝑚𝑎𝑥 vs 𝜀𝑚𝑎𝑥 [Fit the graph with straight line]. 

 2. Plot flux (𝜑) vs time (𝑡) 

Error Analysis:  You have used the following relation to calculate error 𝑉𝑚𝑎𝑥. 

∆𝑉𝑚𝑎𝑥

𝑉𝑚𝑎𝑥
=

∆𝑅

𝑅
+

∆𝑇

𝑇
+

∆𝜃

2
cot (

𝜃

2
) 



 

 
 

 

Aim: 

 

• To learn about the magnetic fields produced by current carrying wires. 

• To obtain the value of free space permeability (𝜇0) using a current balance. 

 

 
 

If a current 𝐼 is sent through an infinitely long straight wire in 𝑧-direction a magnetic field is set up around 

it, which is given by 
 

 𝐵⃗ =
𝜇0𝐼

2𝜋𝑟
𝜑̂ ................... (1) 

 

where 𝑟 is the distance from the central axis of the wire and 𝜇
0
 is the permeability of free space 

(4𝜋 × 107 N/A2). If another wire carrying the same current 𝐼 is placed parallel to the first wire at a 

distance 𝑟 from it, it will experience a force of magnitude given by 
 

 𝐹 = 𝐵𝐼𝐿 =
𝜇0𝐼

2𝜋𝑟
∙ 𝐼𝐿  

 ⇒ 𝐹 =
𝜇0𝐿

2𝜋𝑟
𝐼2 ................... (2) 

 

where 𝐿 is the length of the second wire. If the two currents are in opposite directions, they repel each 

other and if they are in the same direction, they attract each other. The expression for the force is, strictly 

speaking, valid only for infinitely long first wire, but we will assume it to be sufficiently accurate for this 

experiment. 
 

The above expression for the force is used to define the ampere in 𝑆𝐼.  The ampere is defined as follows: 

“One ampere is the current which, if present in each of two parallel conductors of infinite length and one 

meter apart in a vacuum, causes each conductor to experience a force of exactly 2 × 107 newton per 

meter of length”. 
 

In this experiment a current 𝐼 is passed in opposite 

directions through two parallel horizontal bars 

which are connected in series. The lower bar 𝐴𝐵 is 

fixed; the upper one 𝐶𝐷 is part of a rectangular 

frame which can rotate about a horizontal axis 𝑃𝑄. 

It can be balanced a few millimeters above the 

fixed bar 𝐴𝐵 by adjusting a counterweight 𝑊.  The 

upper bar supports a small pan onto which weights 

are placed, thereby causing the upper bar to drop 

down towards the lower one. 

A 
C 

𝑭𝒊𝒈. 𝟏 



 

When the current is turned on and increased sufficiently, repulsion between the two bars causes the 

frame to rotate so that 𝐶𝐷 goes up. The frame stays at some angle where the torque due to weights and 

the magnetic repulsion force balance. By putting appropriate weights on the pan, the frame can be 

brought back to its initial equilibrium position.  The position of the bar is observed by means of a mirror, 

a laser and a scale. With this experimental set up one can then determine the relationship between the 

force on either conductor and the current passing through the conductors. 
 

Current is passed from the DC power supply to the bars through a commutator. It contains four holes and 

two keys are inserted in one set of opposite holes to pass the current in the bars in one sense. When the 

keys are put in the other set of opposite holes, the direction of current in bars gets reversed. 

 

 
 

In this experiment you will measure the force 𝐹 exerted by the fixed bar 𝐴𝐵 on the upper bar 𝐶𝐷 as a 

function of the current 𝐼 passed through them for a fixed distance 𝑟 between them. From 𝑒𝑞. (2) you can 

determine 𝜇0. 
 

→ Look at the apparatus and identify various parts of the set up. Check that the frame rotates freely 

about the axis 𝑃𝑄. Check that 𝐴𝐵 and 𝐶𝐷 are both horizontal and parallel to each other. If needed, 

you can adjust the inclination of 𝐴𝐵 with the help of the screws given on the binding posts art 𝐴 and 

𝐵. See how the frame rotates if you push the bar 𝐶𝐷 slightly in upward direction. Study how the 

current gets reversed when the positions of the keys in the commutator are changed. 

→ Level the base of the current balance using a spirit level and adjusting screws at the bottom of the 

balance. Do not turn the screws if the balance is already leveled. 

→ Connect the apparatus as indicated in the wiring diagram. Don't put keys in the commutator. 

Remember that the current carrying wires produce magnetic fields. Care has to be taken to avoid 

these fields exerting forces on the movable bar. Wire should leave binding posts at right angles. 

→ Adjust the counterweight until the upper bar is a few millimeters above the lower bar. 

→ Set up the laser and a scale at 1 to 3 meters from the mirror fixed with the frame. You are given a 

small laser for the measurement of small deviations of the bar. Adjust the laser mount until you can 

see the reflected laser beam spot on the scale clearly. Record the equilibrium point indicated by the 

reflected laser spot on the scale. Take care to choose a reference point on the reflected spot as the 

size of the spot (beam waist) could be fairly large. You may have to put off the fans in order to avoid 

oscillations of the frame. 

→ In increments of 5 mg, place weights in the pan.  Adjust the current until the scale reading returns to 

its equilibrium value.  Record the current.  Reverse the current and repeat.  Find the average current. 

→ Measure the length of the upper bar carrying the current. 

Q P 

C 

A 

D
C

 P
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w
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p

p
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A 

𝑭𝒊𝒈. 𝟐 − 𝑊𝑖𝑟𝑖𝑛𝑔 𝐷𝑖𝑎𝑔𝑟𝑎𝑚 



 

→ The center-to-center distance between the bars at equilibrium can be determined as follows. Measure 

the distance 𝑎 from the knife-edge to the center of the front bar at each side (𝑃𝐶 𝑎𝑛𝑑 𝑄𝐷) and take 

the average. Record the scale reading at equilibrium.  Depress the upper bar 𝐶𝐷 by placing a small 

coin on the scale pan so that it touches the lower. Note the new scale reading. The distance 𝑟0, 

between the facing surface of the two bars is given by 
 

𝑟0 =
𝑦𝑎

2𝑏
 

where 𝑦 is the difference in scale readings,  

            𝑎 is the mean distance from the knife edge to the bar, and  

         𝑏 is the distance from the mirror to the scale. 

The center-to-center distance (𝑟) is obtained by adding the diameter (𝑑0) of either wire to (𝑟0). 
 

Using the data obtained above plot the force 𝐹 as a function of 𝐼2 and determine the slope of the resultant 

curve. From the slope determine the value of the permeability of free space 𝜇0. 
 

 
 

 

1. Why do you not have to worry about the weight of the upper bar when you 
calculate the force F between the two bars? 

2. Could the force between the conducting bars be determined in this manner if an 
alternating current were used? 

 
Reference:  Introduction to Electrodynamics by D. J. Griffiths, 2nd Ed. 

Physics Part II by Halliday and Resnick. 
 

𝑩 

𝟐𝜽 

𝑫𝟐 

𝑫𝟏 

𝑪 
𝒘𝒊𝒓𝒆 𝑪𝑫 𝒊𝒔 𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍𝒍𝒚 

𝒊𝒏𝒔𝒊𝒅𝒆 𝒕𝒉𝒆 𝒑𝒂𝒈𝒆 

𝒚 

𝒂 

𝒃 

𝑨 
𝒘𝒊𝒓𝒆 𝑨𝑩 

𝒊𝒔 𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍𝒍𝒚 
𝒊𝒏𝒔𝒊𝒅𝒆 𝒕𝒉𝒆 𝒑𝒂𝒈𝒆 

𝒓𝟎 
𝒓𝟎 

distance between bottom side of wire 𝐶𝐷 
and upper side of wire 𝐴𝐵 

distance between middle of wire 𝐶𝐷 in 
𝐷1 position and middle of wire 𝐶𝐷 in 𝐷2 
position 𝒓𝟎 

𝑪 𝑫 

𝑨 



 

 

Aim: 

Working Formulae: 

Observation/Table: 

Least count of current display = Least count of voltage display = 

Least count of weighing machine = Least count of vertical scale = 

Least count of measuring tape = Least count of screw gauge = 
 

Table I: Table for force 𝐹 and 𝐼2 (Take 5 readings) 

Sl. No. Mass (𝒎) 
(𝑖𝑛 mg) 

𝑰𝟏 
(𝑖𝑛 amp) 

𝑰𝟐 
(𝑖𝑛 amp) 

𝑰𝒂𝒗𝒈 
(𝑖𝑛 amp) 

𝑰𝟐 = (𝑰𝒂𝒗𝒈)
𝟐
 

(𝑖𝑛 amp) 

𝑭 = 𝒎𝐠 
(𝑖𝑛 N) 

1       
2       
3       
4       
5       

 

Table II: Table for diameter of wire (𝐶𝐷) (make 3 data only at three different places of wire) 

Sl. 
No. 

Main scale reading (M. S. R) 
𝑖𝑛 mm 

Circular scale 
reading (𝐶. S. R) 

Total Diameter 
(𝑑 = M. S. R + C. S. R × L. C) 𝑖𝑛 mm 

1    
2    
3    

 

Calculations:  

 1. Calculate the slope of the graph of 𝐹 vs 𝐼2. 

2. Calculate 𝑟0 and 𝑟. 

3. Calculate free space permeability 𝜇0. 

Error Analysis:  

 Calculate errors in - 

1. 𝑟0 3. Slope of 𝐹 vs 𝐼2 graph 

2. 𝑟 4. 𝜇0 

  

Final Result: 

 Write your final results in this format - 𝑅𝑒𝑠𝑢𝑙𝑡 ± 𝐸𝑟𝑟𝑜𝑟. [All units should be mentioned] 

1. 𝑟0 3. Slope of 𝐹 vs 𝐼2 graph 

2. 𝑟 4. 𝜇0 
 



 

 
 

 

Aim: 

 

• To study the precession motion of gyroscope. 

• To determine moment of inertia of gyroscope disc. 

 

 
 

Gyroscopic motion plays an important role in many nuclear and celestial phenomena. Gyroscopes are 

used in compasses, in the steering mechanism of torpedoes and in inertial guidance systems. In this 

experiment you will study the precession of gyroscope.  The objective is to find the moment of inertia of 

the gyroscope by measuring the precession frequency, as a function of the spin frequency of the 

gyroscope. 
 

 
 

The gyroscope is a uniform heavy disk 𝐺 mounted on a rod as its axis. The disk can be spun about the rod 

and the rod can also be rotated freely in all directions. The gyroscope which is free to rotate about all the 

three axes, is balanced in horizontal position with the help of a counterweight 𝐶 and is set to rotate with 

frequency 𝜔 about the 𝑥-axis [𝑠𝑒𝑒 𝑓𝑖𝑔. 1 & 2]. 
 

 

𝑭𝒊𝒈. 𝟏 
 



 

If 𝐼 is the moment of inertia of the gyroscope about its symmetric axis, the angular momentum 𝐿 is given 

by 

 𝐿⃗ = 𝐼𝜔𝑗̂ ................... (1) 

Now, the addition of an additional weight 𝑚, at a distance 𝑟 from the support point 𝑂, introduces a 

supplementary torque 𝜏. 
 

 𝜏 = (−𝑟𝑗̂) × (−𝑚g𝑘̂) = +𝑚g𝑟𝑖 ̂  

 ⇒
𝑑𝐿⃗ 

𝑑𝑡
= 𝑚g𝑟𝑖̂ ................... (2) 

 ⇒ 𝑑𝐿⃗ = 𝑚g𝑟 ∙ 𝑑𝑡 𝑖 ̂  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From (1) and (2), you see that the angular momentum vector turns by 

an angle 𝑑𝜑 in the 𝑥-𝑦 plane (𝑠𝑒𝑒 𝑓𝑖𝑔. 3). As the spin angular velocity is 

large, the angular momentum remains almost along the axis of the wheel, 

and hence to rotate the angular momentum, the wheel itself rotates. 
 

Thus, the gyroscope starts precessing (rotates slowly about the vertical 

axis) with a frequency 𝜔𝑝 under the influence of 𝜏. 
 

The angle rotated in time 𝑑𝑡 is 𝑑𝜑, from 𝑓𝑖𝑔. 3, 
 

𝑑𝜑 =
|𝑑𝐿⃗ |

𝐿
 ................... (3) 

 

Using 𝑒𝑞. 1, 2 𝑎𝑛𝑑 3, we get the precession angular velocity as 

 𝜔𝑝 =
𝑑𝜑

𝑑𝑡
=

1

𝐿
|
𝑑𝐿⃗ 

𝑑𝑡
| =

𝑚g𝑟

𝐼𝜔
 ................... (4) 

If 𝑡𝑝 is the time for one complete precessional revolution and 𝑡 is the time taken by the gyroscope to spin 

about its axis (one rotation), then 

 𝜔 =
2𝜋

𝑡
  &  𝜔𝑝 =

2𝜋

𝑡𝑝
  

 

Putting these in 𝑒𝑞. (4), we get 

 
1

𝑡
=

𝑚g𝑟

4𝜋2𝐼
𝑡𝑝 ................... (5) 

 

 

Thus, a plot of (1 𝑡⁄ ) 𝑣𝑠 𝑡𝑝 should yield a straight line for a fixed 𝑚, from which the moment of inertia 𝐼 

of the gyroscope disc can be obtained. 

𝑭𝒊𝒈. 𝟑 

𝑑𝜑 

𝑑𝐿 

𝐿 

𝑥 

𝑦 

𝑭𝒊𝒈. 𝟐 



 

 
 

Balance the gyroscope 𝐺 horizontally, using the counterweight 𝐶 (𝑠𝑒𝑒 𝐹𝑖𝑔. 1), without any hanging 

weight 𝑚. 

→ Give a spin to the horizontally balanced gyroscope by pulling a string wrapped over its stem and 

measure the time (𝑡) required to complete one revolution using the given light barrier counter.  

[For this, attach a soft opaque strip to the rim of the gyroscope]. 

→ Immediately after this, hang a mass m on the groove at the longer end of the gyroscope.  This is at 

a distance 𝑟 = 27cm. The gyroscope will precess (𝑐𝑎𝑛 𝑦𝑜𝑢 𝑔𝑢𝑒𝑠𝑠 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛? ). Using the 

stopwatch, measure the duration of half the rotation (
𝑡𝑝

2⁄ ). 

→ Without any delay, remove the mass 𝑚, so that gyroscope stops precessing and measure 𝑡 again, 

using the light barrier counter. 

→ The average of 𝑡 measured in steps (𝑎) and (𝑐) above is to be used in 𝑒𝑞. (4). 

→ Repeat for several different initial spins of the gyroscope for a particular 𝑚 and plot (1 𝑡⁄ ) 𝑣𝑠 𝑡𝑝 

and find the slope. Find 𝐼 using 𝑒𝑞. (4). 

→ Find 𝐼 for two more values of 𝑚. 

→ Estimate the uncertainty in your result. 
 

 
 

 

1. What are the directions of 𝐿 and 𝜏 in the frame of axes shown in Fig. 2? 

2. Why are you asked to measure 
𝑡𝑝

2
⁄  and double it, instead of measuring 𝑡𝑝 directly? 

 

 

You may also do the following: 
➔ Rotate the wheel in opposite sense and see that the sense of precession also gets 

reversed. 
➔ Spin the wheel and give a gentle tap on the axle rod from above. See if the rod 

rotating. Now give a tap at the same position from below. What do you see? 
➔ Put the mass m on the groove while the gyroscope is not spinning. Analyze the 

motion by working out the direction of torque of mg and of the angular 
momentum produced during the motion. 

 

Reference: Kleppner and Kolenkow, An Introduction to Mechanics (McGraw Hill, 1978), Chapter 7. 

 



 

 

Aim: 

Working Formulae: 

Observation/Table: 

Least count of light barrier counter =  

Least count of stopwatch = 

Mass of hanger = 

Mass of block = 

Total mass = 

Sl. 
No. 

Initial time 
period 

of wheel 
(𝒕𝟏) 

𝑖𝑛 sec 

Final 
time period 

of wheel 
(𝒕𝟐) 

𝑖𝑛 sec 

Half 
precession 
time period 

(
𝒕𝒑

𝟐
⁄ ) 

𝑖𝑛 sec 

Average 
time period 

of wheel 
(𝒕𝒂𝒗𝒈) 
𝑖𝑛 sec 

Inverse of 
Average time 

period 

(𝟏 𝒕𝒂𝒗𝒈
⁄ ) 

𝑖𝑛 sec−1 

Complete 
precession 

time 
(𝒕𝒑) 
𝑖𝑛 sec 

1       

2       

3       

4       

5       

6       

 

Graph:  

 Plot (1 𝑡𝑎𝑣𝑔
⁄ ) 𝑣𝑠 𝑡𝑝  (for calculation, use back page of graph paper). 

Calculations:  

1.   Slope of best fit line (𝑚). 

2.   Average moment of inertia (𝐼) of the wheel (use 𝑚 to calculate this). 

Error Analysis:  

 1.   Calculate error in the slope (∆𝑚). 

 2.   Calculate error in moment of inertia (∆𝐼). 

 

Final Result: Write your final results in this format − 𝑅𝑒𝑠𝑢𝑙𝑡 ± 𝐸𝑟𝑟𝑜𝑟. [All units should be mentioned] 



 

 

 
 

CRO is employed to study waveforms, transient phenomena, and other time varying quantities from very 

low to high frequencies. The major component of CRO is cathode ray tube (CRT). In the diagram below 

the schematic of the cathode ray tube (CRT) and a general purpose CRO is shown. 

The CRT consists of a highly evacuated funnel-shaped glass tube. The electrons are emitted from 

thermionic cathode. A number of electrodes transform the emitted electrons into a high velocity electron 

beam, known as cathode ray. The electron beam travels through the evacuated space of the tube towards 

a fluorescent screen. When the beam strikes the screen, the kinetic energy of the electrons is converted 

into light emission. A small light spot is thus produced on the CRT screen at a place where the electrons 

hit it. On its way towards the screen the electron beam can be deflected by suitable voltages. Usually, the 

signal under test deflects the spots vertically on the screen. Another voltage proportional to time is 

employed to deflect the spot horizontally. Thus, the time variation of the signal is displayed on the screen. 

If the external voltage is DC, a horizontal straight line would be traced out whose vertical position depends 

on the voltage applied. For sine or square wave voltages, the corresponding shape is traced on the screen, 

and the amplitude and period of the signal can be measured. 
 

Precaution 
It is instructive to operate the CRT with a low brightness of the spot. If a very bright spot is allowed to 

stay at rest on the screen for long time, burnout problems may appear. 

𝑩𝒍𝒐𝒄𝒌 𝑫𝒊𝒂𝒈𝒓𝒂𝒎 𝒐𝒇 𝒂 𝑮𝒆𝒏𝒆𝒓𝒂𝒍 𝑷𝒖𝒓𝒑𝒐𝒔𝒆 𝑪𝑹𝑶 



 

To measure time, the horizontal displacement on the CRT screen is calibrated in time. The horizontal axis 

is referred to as the time base. The calibration of the horizontal axis is read from the front panel control 

marked TIME/DIV. The vertical axis is calibrated in volt to measure the signal voltage. The calibration is 

read from the front panel control marked VOLT/DIV. The sweep and the signal voltages are amplified 

before application to the deflecting plates. The corresponding amplifiers are known as horizontal amplifier 

and vertical amplifier, respectively. 

 

In the dual beam CRO two electron beams are obtained in the CRT. The beams produce two spots of light 

on the CRT screen and facilitate simultaneous observation of two signal waveforms.  
 

The steps described in the following subsections below are designed to introduce the different features 

of the scope one after another. 
 

 
 

Do not turn the CRO on until you have studied the controls on the control panel of the scope. Disconnect 

any signal cables from either of the two input terminals on the control panel. Locate the intensity knob 

and turn it completely counter-clockwise. This will ensure that the beam does not damage the screen 

when the scope is later turned on. Turn the CRO on by pushing the power button in. Turn the intensity 

knob clockwise until the beam appears as a stationary spot. The spot should be near the center of the 

screen. Adjust the focus knob to make the spot sharp and in focus. 
 

Locate the large knob marked SEC/DIV. This knob controls the speed of the beam sweeping across the 

screen horizontally. The actual setting of this knob will be displayed on the oscilloscope screen. For 

example, if SEC/DIV is set at 5 ms, the beam will move to the right by one division in five milliseconds.  
 

Now find two similar knobs marked VOLTS/DIV. These knobs control the deflection of the electron beam 

in the vertical direction for a given input voltage. As with the SEC/DIV knob, the actual setting of the 

VOLTS/DIV knob will be displayed on the screen. For example, if a signal with strength of one volt is 

applied, then with the knob at 1 VOLT/DIV, would cause a vertical deflection of 1 division. With the knob 

turned clockwise to the 0.2 VOLT/DIV position, the same signal would cause a deflection of 5 divisions. 
 

In addition to these two controls described above, there are a number of other knobs and buttons on the 

control panel. We will not describe the function of all these knobs here. Notice that many of the buttons 

have both an “in” and an “out” position. When the button is in the “in” position, that feature is enabled. 

Find the GND button on the control panel. When the GND button is in the “in” position, the vertical input 

of the scope is connected to ground potential (i.e., a potential of 0 volts). 



 

 

 
‘𝑨’

 

• Place the prism on its triangular base so that its refracting edge is at the center of the prism table 

and points towards the collimator. 

• Turn the prism table such that about half of the light falls on each refracting face. Lock the prism 

table. You should be able to see the image of the slit with naked eye on reflection from either face 

of the prism. 

• Now rotate the telescope to receive the reflected light on one side of the prism. Do the same on 

the other side.  If the instrument is correctly leveled the images from both sides fall at the center 

of the telescope cross wires. If necessary, adjust the entrance slit width of the collimator to 

sharpen the image. 

• Bring one edge of the slit image into coincidence with the intersection of the crosswires and lock 

the telescope. Record the reading using the vernier. Do the same on the other side. Use the same 

vernier each time. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From these measurements, calculate the refracting angle 𝐴 of the prism. 
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𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕 𝒐𝒇 𝒑𝒓𝒊𝒔𝒎 𝒂𝒏𝒈𝒍𝒆 

Prism 



 

 

 

 

 

 

 

 

 

 

 


